Cancer Meeting On Chemotherapy Begins Nov. 2

The Second Conference on Experimental Clinical Cancer Chemotherapy will be held on November 2 and 3 at the Statler-Hilton Hotel in Washington. The conference is sponsored by the National Cancer Institute's Cancer Chemotherapy National Service Center.

This meeting, like its predecessor in November 1959, will bring together most of the Nation's leaders in the cancer chemotherapy field.

80 Subjects Included

The program will include some 80 presentations on subjects ranging from synthesis and testing of new agents to evaluation of large-scale studies of the chemotherapy of all types of malignancy.

On Thursday, November 2, there will be a general session covering the broad chemotherapy field. Clinical predictability of laboratory testing will be discussed and reviewed.

(See CHEMOTHERAPY, Page 8)

Research Equipment Exhibit Opens With 134 Displays

An extensive and intriguing array of the latest research instrumentation and other scientific apparatus, numbering 134 exhibits, went on display here today with the opening of the Eleventh Annual Research Equipment Exhibit.

The equipment is displayed in Building 22 and trailers lined up on the adjacent parking lot to accommodate the overflow.

Sponsored by the Nation's leading manufacturers of laboratory and clinical research tools, the exhibit program is featuring a series of special instrumentation clinics. These consist of demonstrations of their newest products by six of the exhibiting firms.

Developments Discussed

Running concurrently with the exhibit is the Symposium on Recent Developments in Research Methods and Instrumentation, which began last night in the Clinical Center Auditorium.

The symposium is held under the auspices of local chapters of national scientific societies.

The 4-day scientific meeting opened with a session on "Applied Gas Chromatography," presided over by Dr. Alton Meister, Chairman of the Department of Biochemistry, Tufts University School of Medicine.

Among the topics discussed were:

1. "Densification and visualization microscopy."—Photo by Bob Pumphrey.
42. "Transmission Electron Microscopy."—Photo by Bob Pumphrey.
64. "Transmission Electron Microscopy."—Photo by Bob Pumphrey.

NIH Growth Reflects Interest in Research

By John Buckley
DHEW Management Trainee

Reflecting the Federal Government's growing support of medical research, the number of NIH full-time employees has increased during the past decade from 2,361 to 8,783.

These and a wealth of NIH employee statistics covering the past 10 fiscal years are contained in the NIH Quarterly Employment Report recently issued by the Personnel Management Branch, OAM.

Analysis of the statistical tables contained in the report reveals that the rate of NIH employee growth was greatest during the first seven years of the 1951-61 decade.

During that period the yearly rate of employee increase varied from 11 percent to a high of 27 percent. Not until 1959, when the total number of employees exceeded 7,000, did the yearly rate of (See NIH GROWTH, Page 8)

New Electronic System At NLM to Accelerate Storage and Retrieval

PHS Surgeon General Terry recently announced that a contract has been signed with the General Electric Company for development of an electronic information storage and retrieval system at the National Library of Medicine. The new Library is located on the southeast corner of the NIH reservation and will be ready for occupancy late this year.

The new computer-based system, to be known as MEDLARS (Medical Literature Analysis and Retrieval System), will enable the National Library of Medicine to broaden and accelerate its services to medical education, research, and practice.

The Library, which this year observes its 125th anniversary, is re- (See ELECTRONIC, Page 5)

CC Cafeteria Inaugurates New Deal With More Services, Food Selection

Beginning tomorrow (Wednesday) morning, the Clinical Center cafeteria will inaugurate a new deal, providing increased services, greater food selection, and "prices that will compare favorably with others at NIH."

In making the announcement, Edith Jones, Chief of the Clinical Center's Nutrition Department, said, "Everybody connected with the cafeteria is happy and excited about it, and we know that everybody at NIH will welcome the new plan."

"We expect," she added, "that business will be booming."

"These changes," Miss Jones said, "will go into effect October 11, when the cafeteria opens for breakfast at 7:30 a.m. We will serve eggs cooked to order, bacon, hash-browned potatoes, toast, rolls, fruit, cold cereals, coffee and milk."

"There will be one line and one cashier during this breakfast period which lasts until 8:30. After 8:30 we will have two cashiers on duty and will serve coffee, rolls, fruit, cold cereals until 11 a.m., when the lunch hour starts."

"And that," Miss Jones pointed out, "is when there is going to be a big change. We'll have one general line and two cashiers until (See CAFETERIA, Page 8)
President Urges Equal Opportunity for Employment of Physically Handicapped

In designating October 1-7 as National Employ the Physically Handicapped Week, President Kennedy called upon the people of this Nation to further the equality of opportunity for employment of the handicapped.

The U.S. Public Health Service estimates that one in every 10 Americans has an impairment which limits his normal activities. Each year approximately 270,000 Americans become disabled to an extent which requires special job placement. This figure must be added to the backlog of 2,150,000 handicapped persons who need training and job opportunities.

From 1942 to 1961, the Federal Government hired nearly 180,000 handicapped persons. These employees have been placed in positions of responsibility and trust, and their performance records indicate that they do their jobs as well as or better than able-bodied workers performing similar tasks.

The Recruitment and Placement Section, PMB, reports that NIH has made a significant contribution to the employment of the physically handicapped. During the past three years, 48 handicapped persons have been employed at NIH. These people serve in non-technical, technical, professional, and administrative areas.

"Even though NIH has a fine record in hiring handicapped persons, there remains a lot that we can do," says C. M. Hull, NIH representative to the Departmental Committee for Placement of the Physically Handicapped.

Urges Fair Appraisal

"When new positions are created or vacancies occur, a determination should be made as to the possibilities for placing handicapped persons in these openings. Supervisory personnel should make a fair appraisal of the pertinent qualifications of physically handicapped applicants and employees.

"No one," he said, "should be denied the opportunity for employment because of a physical handicap which does not keep him or her from performing the job satisfactorily. For these reasons, NIH must assume a greater share of its responsibilities in the vocational placement of handicapped people."

For further information contact Mr. Hull, Ext. 2403, or Dr. John M. Lynch, Chief, Employee Health Service, Ext. 4411.

Members of the NIH Planning Committee for the 1961 UGF campaign select material to be used in publicizing the drive. From left: Roy Perry, DR5, publicity chairman; Dr. G. Halsey Hunt, Chief of DGMS, and campaign vice chairman; Robert H. Handy, DR5, coordinator of the drive; George Mordern, DR5, art director; and Chris A. Hansen, chief of DR5 and campaign chairman. Other members of the committee, not shown, are Hazel W. Rea, NIMH, and Francis J. Olsen, CC.—Photo by Bob Pumphrey.
Small Unit Is Big Performer In Fire Prevention at NIH

By Mary-Helen Emmons

A small, unpretentious structure, in a fence-enclosed area at the corner of South and Center Drives, is a focal point for the elimination of one of the greatest fire potentials on the NIH reservation—the accumulation of flammable chemical wastes.

This small structure which performs such a big function is the Chemical Waste Disposal Plant, an important unit of the NIH Fire Department.

At this plant—the only one of its kind in the United States, according to Fire Chief Norman C. Anders—members of the Fire Department daily destroy the many hundreds of kinds of flammable waste solvents, organic materials, acids, poisonous compounds, and compressed gases that comprise a major threat to physical safety in NIH laboratories.

Procedure Is Hazardous

The destruction of these wastes is a hazardous procedure from the time they are collected from the various laboratories until they are rendered harmless at the plant. Each category of waste requires a different method of handling, and many that are non-combustible in their natural states react violently when exposed to incompatible compounds.

Chemical waste for disposal is transported by members of the Fire Department from NIH laboratories to the plant in a specially equipped two-part, steel-plated truck. The roof of the truck is designed to slide open so that if an unstable material explodes in transit, the impact would be diverted upward without damage to the truck or the occupants of the cab.

Whenever such unstable material is transported, the truck’s dome light is flashing, and in some cases the siren is used as a warning to the drivers of other vehicles.

Operated Hydraulically

This is a unique mechanism consisting of a steel angle-iron ram, five feet high and two feet square, operated hydraulically. As bottles are crushed by this ram they are sprayed with water to dilute the chemicals and minimize fumes.

Solvents and known hazardous solids are burned in a special pit, and flames are discharged into a combustion chamber designed to reduce smoke and disagreeable odors.

One of the most important features of the disposal plant is an everyday weather vane. Because of noxious odors the hour of waste disposal is determined at all times by the direction of the wind. If the wind is blowing toward occupied buildings, disposal is delayed until it shifts to another direction.

All of the firefighters on the reservation have been thoroughly trained in the handling of waste chemicals and every precaution is taken for their safety.

W. Ray Mullican, a Fire Inspector with the Service Unit of the NIH Fire Department (left), pours waste acid into the acid sink at the Chemical Waste Disposal Plant. William F. Coleman, a Service Unit Firefighter, stands by in case of accident.—Photo by Jerry Hocht.

Chemicals are destroyed in accordance with accepted disposal procedures. Acids are poured into a specially constructed acid sink from which they drain through a 35-foot glass pipe to a neutralizing tank. They are treated with lime until completely neutralized under pH control, then committed to the sanitary sewer.

Other chemicals, and especially those of unknown composition, are fed in unopened bottles or cans, through a drop-slot in an 18 inch concrete wall, into a “bottle crusher.”

Grants Awarded $14.5 Million in Grants Awarded Health Facilities

PHS Surgeon General Terry recently announced the award of 48 grants, totaling $14,575,628, to help build and equip additional health research facilities in 40 institutions in 23 States.

Administered by the Division of Research Grants, the Health Research Facilities construction program is designed to expand and improve the Nation’s facilities for medical research.

Grants are made to both public and private nonprofit hospitals, medical schools, schools of public health and other research institutions and are awarded on a matching basis.

Congress Extends Program

Approval of the awards by the Surgeon General upon the recommendation of the National Advisory Council on Health Research Facilities construction program initiates the sixth phase of the $180 million program, established in 1956 and extended by the 85th Congress in 1958.

“The grants,” Dr. Terry said, “include awards for new construction and funds needed for renovations and remodeling of antiquated and inadequate facilities, as well as essential research equipment for previously awarded construction projects now nearing completion.”

Including the recently announced grants, 832 awards totaling $164,423,772 have been made to eligible institutions since the inception of the Health Research Facilities program.

From the time the wastes are collected from the laboratories until destruction is completed, the men work in teams of two. When engaged in actual destruction, they wear protective clothing consisting of coveralls, heavy rubber aprons, boots, rubber gloves, and face shields. They are also equipped with oxygen tanks to avoid the danger of breathing contaminated air.

So far this year the Fire Department has destroyed 10 tons of solid chemical waste and 4,000 gallons of liquid waste. This is almost as much as all the waste destroyed during 1960.

Chief Anders says that he is highly confident of the economy of the disposal operation. He particularly emphasizes the value of fire-preventive measures such as this one, because of the violent and destructive nature of many chemicals and the intensive physical and property damage that could result from improper handling.
Double Jeopardy Seen in Allergies From Parasites

The “double jeopardy” to man of parasitic infections which also cause serious allergy problems demands parasitologists whose knowledge and training in immunology equals their competence in parasitology, Dr. Justin M. Andrews, Director of the National Institute of Allergy and Infectious Diseases declared recently.

He characterized hypersensitivity stemming from an invasion of parasites as “a supremely cruel jest of nature.”

In his Presidential Address, Dr. Andrews said, “I believe that a more widespread study of parasitologists’ views in his Presidential Address. Dr. Andrews outlined the history and medical literature of the two disciplines of parasitology and immunology and explained procedural devises for indicating the existence of allergic states in parasitic diseases.

One such device consists of demonstrating the passive transfer of skin-sensitizing antibodies generated by specific parasitic antigens. The technique has been employed for this purpose to a limited extent by parasitologists.

Study Suggests Enzyme May Control Staphylococcus Resistance to Penicillin

Continuing basic biochemical studies on the mechanism of action of new synthetic penicillins were reported by Dr. Harry G. Steinman, Laboratory of Clinical Investigation, National Institute of Allergy and Infectious Diseases, at the Fifth International Biochemical Congress held in Moscow.

Dr. Steinman indicated that the resistance to benzylpenicillin (Penicillin G) displayed by certain naturally occurring strains of the staphylococcus (a grave problem in the treatment of some staphylococcal infections has been created by the resistance of these strains to penicillin) and their production of the enzyme penicillinase suggests a fundamental cause-and-effect relationship.

Role Uncertain

Dr. Steinman said that there is some uncertainty as to the exact role of penicillinase since previous investigations have shown that there also exists in staphylococci an entirely different mechanism of resistance which is not based on penicillinase.

Since the problem of resistant staphylococci and its clinical management is vitally important, understanding of this basic mechanism of resistance may have important practical application.

Furnishes Evidence

By the use of graded series of inocula of strains of staphylococci containing different basal amounts of enzyme, Dr. Steinman obtained results which furnish evidence that the degree of resistance of a given concentration of staphylococci was a function of the natural basal content of the enzyme.

The quantitative effects of the enzyme were reflected not only in the tremendous divergences in minimal inhibitory concentrations for small and for large inocula, but also in the difference in minimal inhibitory concentrations for equally large numbers of two strains of penicillinase-producing streptococci with different capacities to produce enzyme.

The role of penicillinase in penicillin-resistance was further examined by the use of modified penicillins which were poor substrates for the enzyme.

Dr. Andrews said, but merits wider application.

Dr. Andrews said that the subject of his address had originated in the desire to “stimulate members of our Society to more and better adjunctive research in the hypersensitivity aspects of our own discipline.”

He added that he was encouraging “both in original research reports and in our parasitological texts . . . unmistakable evidence of keen interest and able competence in immunology on the part of our parasitologists.”

NCI Scientists Isolate Tumors, Will Study Growth Requirements

Scientists of the Public Health Service’s National Cancer Institute have developed a technique for growing “isolated” tumors in laboratory animals. The tumors are isolated from surrounding organs and connected with the host animal by only a single artery and vein from which blood can be drawn. Use of this technique will permit more accurate study of tumor-host relationships and growth requirements of tumors that has hitherto been possible, according to Dr. Pietro M. Gullino and Flora H. Grantham, of the Institute’s Laboratory of Biochemistry, who described their work in the current issue of the Journal of the National Cancer Institute.

The Institute scientists reported the use of the method in growing 12 different types of transplanted tumors which increased through a simple incision, a kidney is isolated from the surrounding tissue and pulled out through the muscle layers into the subcutaneous space, leaving only a vascular connection with the host animal.

Grows in Paraffin Bag

A tumor is implanted in the kidney, which is enclosed in a bag of paraffin. The tumor grows in this bag and destroys the kidney; the kidney blood vessels remain as the only connection between the tumor and host. An ovary may be used instead of a kidney with equal success.

The procedure can be applied to all tumors normally grown in a fluid from transplant, and mice. Amounts of tumor obtained are very large; ovarian implants are as much as 400 times larger than the host ovary.

Samples of blood drawn at intervals from the connecting artery and vein can be analyzed quantitatively in studies of the exchange of fluids between tumor and host.

A high degree of resistance was achieved.

This resistance mechanism appears to be superimposable upon the penicillinase mechanism since the change in penicillinase content of penicillinase-producing organisms (which increased through the induced enzyme formation) did not parallel the increase in resistance.

This type of resistance does not appear to be of clinical importance, since earlier studies have shown such resistant mutants to be less virulent, as well as culturally different, than the parent pathogenic strains.
New Flexibility of Lab Design Noted
In Research Facilities Seminar Here

Pictured while participating here recently in the first of a proposed series of research facilities design seminars are several of the 14 PHS design engineers who attended. Left to right: Murray A. Gets and Robert A. Cohen, BMS; Wilbur Taylor and C. J. Arcileisi, BSS; a stenographic reporter; and RFPB Development Chief John A. Confrancesco, who arranged the meeting.—Photos by Sam Silverman.

Research laboratories are being designed with maximum flexibility to meet the needs of future research requirements.

This trend, which is reflected in planning for new facilities at NIH, at the Communicable Disease Center, and in Food and Drug Administration's new buildings, was noted during the Research Facilities Design Seminar held at NIH September 7-8, sponsored by the Research Facilities Planning Branch, Division of Research Services.

Hansen Opens Seminar

Attended by DRS representatives and by design engineers from the Bureau of Medical Services, Bureau of State Services, Food and Drug Administration, and the National Academy of Sciences, the seminar was opened by Chris A. Hansen, DRF Chief, and moderated by A. E. Williamson, Chief of the Research Facilities Planning Branch, and Donald L. Snow, Chief of the Laboratory Design Documentation Project.

It was the first meeting of such a group of design engineers to exchange information about the planning problems they share in common.

Robert M. Dillon and Robert W. Spangler, both members of the Building Research Advisory Board, represented the National Academy of Sciences, and the Food and Drug Administration was represented by William H. Allen.

Others present included Robert A. Cohen, Lewis D. Wilkinson, and Murray A. Gets, of the Bureau of Medical Services.

Mr. Confrancesco, Acting Chief of the RFPB Development Section, was responsible for arranging the seminar.—J.T.T.

Preparation of Cultures Is 'Big Business' Here

Over 25 million ml. of culture media were prepared by the Media and Glassware Section of the Laboratory Aids Branch, DRS, during the first six months of 1961.

These figures were revealed in a joint survey by LAB and the Financial Management Branch.

The study showed that 4,500 individual requests for over 400 different types of bacteriological and tissue culture media accounted for the vast quantity produced. NAID was the largest consumer, with 5 million ml., while NIMH used only 12,000 ml.

As an indirect but related outgrowth of media preparation, the Glassware Preparation Unit of the Section washes and sterilizes over 5 million pieces of laboratory glassware annually for this and other research uses.

Negotiators Visit Poland to Discuss Joint Research

An eight-man team of negotiators, including four from NIH, were scheduled to arrive in Warsaw, Poland, October 8 to discuss proposed collaborative research projects with representatives of the Polish Ministry of Health and Polish scientists. The team planned to remain in Poland for 10 days.

The proposed studies would be supported by U.S.-owned foreign currencies and would be administered by the Office of International Research.

Members Listed

NIH members of the team are Dr. Richard L. Masland, Director of the National Institute of Neurological Diseases and Blindness; Joseph S. Murtough, Chief of the Office of Program Planning, Office of the Director; Dr. Igor Klatzo, Head of the Section on Clinical Neuropathology, NINDB; and Dr. Margaret Sloan, Special Assistant to the Director of the National Cancer Institute.

Other members of the team, all of the Public Health Service, are Scott Adams, Deputy Director of the National Library of Medicine; Ralph C. Graber, Assistant Chief, Division of Air Pollution; Dr. Richard L. Woodward, Chief of Water Supply, Sanitary Engineering Center, Cincinnati, Ohio; and Dr. James H. Steele, Veterinary Director, Communicable Disease Center, Atlanta, Ga.

Discussion Areas Named

Proposed areas of discussion include studies of the perinatal causes of central nervous system diseases, cerebrovascular diseases, encephalitis, the geographical distribution of cancer, brain lesions in dogs and monkeys, and animal brain function.

It is anticipated that the discussions will involve selection of Polish institutions and investigators representative of the several areas of mutual interest. After initial discussions the team plans to divide into groups for visits to these institutions.

Funds to be used to support the proposed collaborative studies are U.S.-owned foreign currencies resulting from the overseas sale of surplus U.S. agricultural commodities under Public Law 480.

The 1962 appropriations for NIH, in the amount of $3,059,000, were used for research projects in Burma, India, Egypt, Pakistan, Yugoslavia, and Israel, as well as Poland.
NIH Investigators Clarify Glucose Role In Maintenance of Stored Body Fats

The vital role of glucose in maintaining stored fat as well as the sequence of reactions by which adipose tissue converts foodstuffs to triglycerides—the major chemical form in which fat is stored in the body—has been determined by investigators at the National Heart Institute.

Investigation of the chemical processes involved in the conversion of foodstuffs to stored fat by adipose tissue was made by Dr. Daniel Steinberg, Head of the Section on Metabolism, Laboratory of Cellular Physiology and Metabolism, National Heart Institute, and his associates, Drs. Martha Vaughan and Simeon Margolis.

Their studies, which also revealed in which ways in which hormones may influence the balance of fat deposition and fat mobilization, were reported to the Fifth International Congress on Biology in Moscow last year.

Only a part of the food eaten at any meal is burned immediately for energy. Much of it is converted into fats (triglycerides) and stored in adipose tissue which serves as the major storehouse of energy available to the body.

Fats are then released from adipose tissue either slowly, to supply energy needed between meals or during sleep, or quickly, to supply the large amounts of energy required in emergencies or during vigorous exercise.

Difference Revealed

The NHI investigators' work revealed one major difference between the process of conversion of foodstuffs to fat carried out by adipose tissue and that demonstrated in other body tissues. This difference is the role of glucose and has major implications with regard to the mechanisms that control fat deposition in the body.

When fats are broken down in the usual way, the products evolved are free glycerol and the component fatty acids from the parent molecule. Stored triglycerides are composed of three fatty acid molecules linked chemically to one glycerol molecule. Before glycerol can be linked to the fatty acid molecules, it must be coupled with phosphate. The coupling is done by an enzyme present in most tissues but not in adipose tissue.

Since adipose tissue does store triglycerides and yet lacks the enzyme to perform the necessary glycerol-phosphate coupling action, none of the glucose available fatty acids are mobilized. The glucose-phosphate complex must be supplied to it.

Glucose Necessary

Apparently the complex is derived from glucose which is brought to the adipose tissue in the blood stream, and a constant supply of glucose is necessary for adipose tissue to maintain its stored fat.

Work by Dr. Robert S. Gordon, another NHI investigator, has established that when a person is fasting and has very limited resources, the associated fatty acids are mobilized from adipose tissue and used as sources of energy.

On the other hand, when plenty of glucose is available, such as just after eating, fatty acids are not mobilized.

The present work shows that the rate at which triglycerides are made is radically increased under the same circumstances that halt fat mobilization.

Insulin decreases fat mobilization from adipose tissue, presumably by its action in increasing glucose metabolism in the tissue. Epinephrine, on the other hand, greatly stimulates the release of fatty acids from the depot.

This action of epinephrine is shared to a varying degree by several other hormones. The effect is not produced by altering the availability of glucose, but may result from acceleration of the rate of breakdown of the triglycerides.

Studies done in collaboration with Dr. Philip R. Eaton, also of NHI, have shown that the rate at which muscle tissue burns fatty acids is controlled in an important way by the concentration of the fatty acids in the blood.

The evidence cited

Unless the body has as yet undiscovered mechanisms that can control and limit the rate at which these fatty acids are burned, when present in high concentrations, a higher rate of metabolism appears to be associated with high levels of fatty acids in the blood.

The investigators pointed out that in two conditions associated with elevated metabolism—hyperthyroidism and overactivity of the adrenal medulla—there is an excessively rapid mobilization of fat and an elevated level of fatty acids in the blood.

They suggested that the high overall metabolic rate associated with these two conditions could be linked to the more rapid burning of fatty acids by muscle exposed to high concentrations of them in the blood. More work is needed to evaluate this hypothesis.
Five NIH Employees Win Cash Awards For Suggestions, Work Performance

Cash awards totaling $705 for superior work performance and adopted suggestions were presented to five NIH employees at individual ceremonies held here recently.

Thelma L. Gardner, a statistical coding clerk in the Laboratory of Socio-Environmental Studies, NIMH, received a check for $250, respectively, for sustained superior performance. Mrs. Ludwig received her cash award at the DGMS quarterly luncheon in honor of employees’ birthdays, held September 22 at Thompson’s restaurant in Bethesda.

A cash award of $75 was presented to William I. Adkinson, a laborer, Office Services Branch, OD, for devising an inexpensive cleaning tool which has become part of the standard cleaning equipment of the Night Cleaning Unit. Specific uses of the tool, consisting of a roll of steel wool attached to a mop head, are removal of wax from the edges of baseboards, in corners, under desks, and in congested areas where a floor machine cannot be used.

John J. Babchak, Shops Section welder, Plant Engineering Branch, DRS, has received a $25 incentive award for his suggestion for the design and installation of a device which significantly extends the service-free period on animal cages.

Arlene Ludwig, a clerk in the Center for Aging Research, DGMS, receives a check for sustained superior performance from Dr. G. Halsey Hunt, Division Chief, at an employees’ birthday luncheon.—Photo by Jerry Hecht.

An adopted suggestion earns a cash award for Thelma L. Gardner, an NIMH statistical coding clerk. Dr. Joseph M. Bobbitt, Associate Director for Program Development, makes the presentation.—Photo by N. MacVicar.

Heart Ass’n. Executives Attend Seminar at NIH

A two-day seminar for staff executives of State affiliates and local chapters of the American Heart Association will terminate this afternoon at NIH.

The discussion, which included a briefing on control programs in affiliation, was held at the downtown offices of the Heart Disease Control Program, Division of Chronic Diseases, BSS.

Similar sessions are conducted at least four times a year at NIH. Their purpose is to assist national, state, and local heart association professional staffs to acquire a fuller understanding of the intramural research activities and grants programs of the National Heart Institute.

ISA Requests Dr. Alt To Organize Division Of Biomedical Sciences

Dr. Frederick Alt, Chief of the Instrument Engineering and Development Branch, Division of Research Services, has been requested by the Instrument Society of America to organize and serve as Director pro tempore of a Biomedical Sciences Division within the society.

The request is the result of the growing national importance of biomedical instrumentation engineering.

At the present time biomedical engineering is recognized as a distinct discipline by the Institute of Radio Engineers and the International Federation of Medical Electronics but only in the field of medical electronics.

The proposed new ISA division is planned to represent the professional engineer in all important areas of biomedical instrumentation engineering: electronics, optics, thermodynamics, and mechanical, sanitary, and chemical engineering.

In the past, biomedical engineering sessions at ISA conventions were presented under the auspices of the society’s Physical and Mechanical Measurements Division.

12 YEARS AGO—

These items appeared in the 1949 July and September issues of the NIH Record, then in its first year of publication:

Wisconsin Avenue will be widened to 70 feet from Five Points, north to Chelsea Lane, thus eliminating the “bottle-neck” that has become increasingly worse as Bethesda and the areas north of the community have grown in population.

Two free tickets to their first show will be presented by “The Hamsters” to the person submitting “the best new name” for their organization.—July 29.

“The Hamsters” have resigned themselves to being called “The Hamsters.” No more appropriate name was submitted in the recent title contest conducted by the NIH drama group.—September 16.

“Resolved, that the membership of the Southern Branch of the American Public Health Association endorses the fine research program carried forward by the National Institutes of Health.” This resolution was passed by the Southern Branch at its annual meeting held recently in Dallas, Tex.

National Gallery Strings Will Play Here Oct. 19

The National Gallery Strings, with Richard Bales, conductor, will be heard in the Clinical Center auditorium Thursday, October 19, at 8:30 p.m. This will be the first program of the 1961-2 concert series sponsored by the NIH Recreation and Welfare Association.

Mr. Bales will direct the entire string section of the National Gallery Strings, “Don Quixote” Suite of Telemann; Concerto for Two Violins in D minor, Bach; with Mark and Nancy Ellsworth as soloists; Round for Strings, Diamond; and Simple Symphony for Strings, Britten.

Because of the expense involved in producing concerts, there will be a charge for admission to the series this year. The fee will be $1 for adults and children 12 or over. Free tickets will be issued for children under 12 years and for Clinical Center patients and their attendants.

Tickets must be obtained in advance from the CC Film Desk.
NIH GROWTH

(Continued from Page 1)

The number of full-time employees, by Institutes, was reported as follows: NCI, 1,106; NIMH, 818; NIAID, 591; NIH, 576; NIAMD, 545; NINDS, 510; and NIDR, 181.

The Divisions' employee totals were reported as: DR5, 1,007; DBS, 407; DBS, 222; and DGMS, 112.

In an organization devoted to medical research, one would expect to find more than a few possessing one or more doctorate degrees. This expectation is amply realized at NIH, where 1,211 members of the scientific and professional staff hold 1,276 doctorate degrees in more than 70 different disciplines.

Medicine is represented by 566, the biosciences by 351, the physical sciences by 77, and psychology by 60. A variety of other branches of knowledge including, among many others, dentistry, veterinary medicine, mathematics, and public health, are represented by 157 doctorate degrees; and 65 Doctors of Medicine are holders of other doctorate degrees also.

Dr. Mary Maver, NCI, Retires September 25

Dr. Mary E. Maver, a member of the original staff of the National Cancer Institute and its first woman scientist, retired September 25 after 31 years with the Public Health Service.

A chemist in the Nucleic Acids Section of NCI's Laboratory of Biochemistry, Dr. Maver joined the staff of the PHS Hygienic Laboratory—foreunner of NIH—in 1930 to engage in cancer research with Dr. Carl Voegtlin, the first Director of NCI.

Her work has been exclusively in the field of enzymes concerned with the metabolism of nucleic acids.

A native of Detroit, Mich., she received a B.S. degree in 1914 and, in 1926, a doctorate in organic chemistry from the University of Chicago. She was also awarded a Douglas Smith Fellowship at the University of Chicago.

Prior to her association with NIH, Dr. Maver served as a pharmacologist with the Chemical Warfare Service, U.S. Army, and as a research associate at the Sprague Memorial Institute for Medical Research in Chicago.

HIGH SCORER WINS HIGH PRAISE

Harold R. Wolfe (center), a Senior Buildings Engineer in the Plant Engineering Branch, DR5, receives a graduation certificate and congratulations from Chris A. Hansen, DR5 Chief, for the high score he achieved in the PEB Air Conditioning and Refrigeration Course which ended in August.

Martin L. Jeter (left), instructor and head of the North Buildings Unit, looks on. (Continued from the 9-month course started October 3.—Photo by Jerry Hacht.

Soviet Visitor Confers With NIH Scientists

Prof. A. N. Studitskii, one of Russia's leading specialists in the field of histology, visited NIH September 27-28 to confer with scientists from NINDB, NCI, and DBS.

Sponsored by the National Research Council of the U.S. National Academy of Sciences, the Soviet scientist is spending a month in the United States. His itinerary will include visits to medical colleges and research institutions in several cities.

Since 1935 Prof. Studitskii has been working in the Institute of Animal Morphology of the Academy of Sciences of the USSR in Moscow.

The author of over one hundred scientific works, his publications have been concerned chiefly with elaboration of the study of restoration of the different tissues. His most recent work dealt with problems relating to electron-microscopic and cytological research of the mechanism of restorative and plastic processes.

CAFETERIA

(Continued from Page 1)

11:30, and then three lines and four cashiers for the rest of the noon period.

"The big innovations," she added, "are these. In addition to the general counter lines there will be a line to the new grill counter, and there will be two places where customers can get coffee without having to get back into the big lines."

"At this grill counter, hamburgers, frankfurters, and grilled cheese sandwiches will be available. Those who wish to supplement their grill selections with other items can break into the general lines for the other things."

During the 2-5 p.m. period, Miss Jones said, desserts and sandwiches will be available, and there will be one cashier. Dinner will be served from 5 to 6:30 p.m., with one line and one cashier.

These services and hours will be in effect Monday through Friday of each week. The Saturday, Sunday and holiday schedule will be: breakfast, 8:30 to 9:30 a.m.; lunch, 11 a.m. to 1:30 p.m.; and dinner, 5 to 6:30 p.m.

"Clinical Center cafeteria patrons," Miss Jones said, "will also find new items on the counter from time to time. We plan to serve steamship rounds of beef, barbecue, pastrami, pizza, and other items as they are available and as they will remain in the food vending machines, she said, will continue to be available 24 hours a day in the coffee shop across the corridor from the cafeteria."