Dr. Walcher Appointed An Assoc. Dir. at NICHD

Dr. Gerald D. LaVeck, NICHD, named Associate Director for Program Planning and Evaluation, National Institute of Child Health and Human Development. The appointment was announced recently by Dr. Gerald D. LaVeck, NICHD Director.

In his new post, Dr. Walcher will direct activities of the Office of Program Planning and Evaluation. Under the NICHD’s recent reorganization—see NIH Record, May 16, 1967—this office is responsible for program development, evaluation, and projection of the Institute’s future needs.

A pediatrician with a broad background in the study of infectious diseases and of growth. (See DR. WALCHER, Page 7)

Dr. Gillette Wins Award For Research on Drugs

Dr. James R. Gillette, Head of the Section on Enzymes Drug Interaction of the Laboratory of Chemical Pharmacology, National Heart Institute, is the 1967 recipient of the Roland T. Lakey Honorary Lecture Award of Wayne State University College of Pharmacy.

The honorary lectureship, named for a former dean of the College of Pharmacy, is sponsored by the Alpha Chi Chapter of the Phi Chi National Pharmaceutical Honor Society at Wayne State. It is (See DR. GILLETTE, Page 6)

Frances Cannon of NIDR Demonstrates How Handicapped Develop Useful Skills

“Judge people by their abilities—not their disabilities” is the theme of the President’s Committee on Employment of the Handicapped which recently sponsored a 2-day conference in Washington.

Frances Cannon of the National Institute of Dental Research was asked to demonstrate her abilities in the role of histopathological technician as a part of a program designed to show that, in spite of serious handicaps, it is possible to develop skilled capabilities in many types of activity. The areas chosen were homemaking, the arts, industry, sports, and finally medicine, which Mrs. Cannon illustrated.

Such handicaps as congenital malformations, paralysis, and loss of vision, hearing, and various limbs are circumvented by intelligent use of favorable working conditions and specially selected appliances, plus rehabilitative training when necessary.

Most essential is a strong personal motivation, including interest in the chosen field and willingness to work hard to acquire the requisite abilities.

However, ability alone is not enough. Someone must give each handicapped person an opportunity to develop or use his skills. Because Dr. Harold R. Stanley, Clinical Director of NIDR, believed that she could learn the exacting routines necessary to make and stain sections of hard and soft tissues, Frances Cannon could say to the audience whose clapping she could not hear, “It is most interesting to contribute to biomedical research.”

It is hard to say whether NIH, the community, or Frances, herself, has profited more from the “Show and Tell” story of mutual faith and cooperation before a national audience.

Frances Cannon, Medical Histopathological Technician at the NIDR, demonstrates her skills at the Annual Meeting of the President’s Committee on Employment of the Handicapped. Commentator is John Batchelder, TV personality of WMAL-ABC.

Frances Cannon of NIDR Demonstrates How Handicapped Develop Useful Skills

“Judge people by their abilities—not their disabilities” is the theme of the President’s Committee on Employment of the Handicapped which recently sponsored a 2-day conference in Washington.

Frances Cannon of the National Institute of Dental Research was asked to demonstrate her abilities in the role of histopathological technician as a part of a program designed to show that, in spite of serious handicaps, it is possible to develop skilled capabilities in many types of activity. The areas chosen were homemaking, the arts, industry, sports, and finally medicine, which Mrs. Cannon illustrated.

Such handicaps as congenital malformations, paralysis, and loss of vision, hearing, and various limbs are circumvented by intelligent use of favorable working conditions and specially selected appliances, plus rehabilitative training when necessary.

Most essential is a strong personal motivation, including interest in the chosen field and willingness to work hard to acquire the requisite abilities.

However, ability alone is not enough. Someone must give each handicapped person an opportunity to develop or use his skills. Because Dr. Harold R. Stanley, Clinical Director of NIDR, believed that she could learn the exacting routines necessary to make and stain sections of hard and soft tissues, Frances Cannon could say to the audience whose clapping she could not hear, “It is most interesting to contribute to biomedical research.”

It is hard to say whether NIH, the community, or Frances, herself, has profited more from the “Show and Tell” story of mutual faith and cooperation before a national audience.

Kreshover Accepts Honorary Degree From U. of Pa.

Dr. Seymour J. Kreshover, Director, National Institute of Dental Research was awarded the honorary Doctor of Science degree from the University of Pennsylvania, his alma mater, at their Commencement exercises on May 22.

Now an Assistant Surgeon General of the PHS, Dr. Kreshover joined the National Institute of Dental Research in 1956 as Associate Director and was appointed Director in 1966. Prior to this service, he was Professor of Oral Pathology and Diagnosis, and Director of Dental Research at the Medical College of Virginia, Richmond.

He was awarded the Meritorious Service Medal by the DHEW, one (See DR. KRESHOVER, Page 6)

Dr. Shannon Is Elected To Membership in APS

Dr. James A. Shannon, Director of the NIH, has been elected to membership in the American Philosophical Society, Philadelphia, Pa.

The Society was founded in 1743, and is comprised of 575 members from all fields of learning including mathematical, physical sciences, geological and biological sciences, social sciences and the humanities.

Members are selected for their scholarly accomplishments. The Society’s famous library specializes in the history of American science and culture up to the middle of the 19th Century, and includes papers of Benjamin Franklin, Charles Willson Peale, Charles Darwin, and many other leading American scientists.
Gifted Science Students To Work in NHL Labs

Winners of the Student Research Fellowship program—some of whom will work in NHL laboratories—were announced by the Montgomery County Heart Association last week.

In the program, gifted high school science students attend Saturday morning seminars on medicine, physiology and biochemistry during January, February and March, then take a highly competitive exam.

Participate in Research

The number of winners is determined by the availability of funds from the County Heart Association. These receive stipends of $150 and are placed for the summer in various National Heart Institute and National Naval Medical Research Institute laboratories, where they participate in actual research projects.

The program is jointly sponsored by NHL, the County Heart Association, NNMRI and numerous other Montgomery County based organizations. Some 300 students begin the program each year, leading to the placing of 12 or so summer workers.

Source of Scientists

A high percentage of “graduates” of this and other similar programs have been shown to subsequently major in science in college. Many NHL “grads” from the 6-year-old program are now in medical or graduate schools throughout the country.

This year’s winners are: R. Philip Anderson, Fred Artiss, Michael Doukas, Jeffrey E. Felf, Neil Goldstein, and Thomas Yang, all of Montgomery Blair High School; Nancy Lord and Eben Tucker, Northwood High School; Stephen Leach, Wheaton High School; Elaine Rich, Springbrook High School; and Michael Blume, Winston Churchill High School.

In addition to the winners, nine others received Honorable Mention for their endeavors in the Fellowship competition.

Council Repeats Warning Of Lung Cancer Danger From Cigarette Smoking

A new public warning by the National Advisory Cancer Council that the continued increase in lung cancer deaths in the United States is almost wholly due to cigarette smoking, was released recently by Surg. Gen. William H. Stewart, Public Health Service.

At its March meeting, the Council, established by the National Cancer Institute Act of 1937, declared that during the 4 months since its previous session 18,000 Americans died of lung cancer.

The Surgeon General disclosed that, although cigarettes marketed in 1966 reached a record total, health-minded Americans are giving up the habit at the rate of about a million a year.

The Surgeon General commented on a March 29 announcement by the U.S. Department of Agriculture that 541 billion cigarettes were smoked last year, an increase of 12.5 billion over 1965.

He pointed out that despite this trend, more than 19 million adults have given up smoking as scientific evidence showing cigarettes to be a serious health hazard has accumulated in recent years.

Frederick T. Brooks Dies in Auto Accident

Frederick T. Brooks, 26, a supervisor in the Section on Experimental Cardiovascular Disease, of the National Heart Institute’s Laboratory of Kidney and Electrolyte Metabolism, was killed May 14 in an automobile accident near his home in Hillecrest Heights, Md. Mr. Brooks joined NHL in August 1962 following graduation from St. Augustine College, Raleigh, N.C.

The young biologist was an assistant to NHL veterinarian Dr. Joseph E. Pierce, and headed a staff of five in the animal unit. His unit performs animal services not only for K & E but the entire Heart Institute.

Mr. Brooks is survived by his wife and two young children. In lieu of flowers, friends in the Laboratory are collecting a fund for his widow.

NIH Orchestra Will Present Concert at CC on June 9

The NIH Orchestra, sponsored by the NIH R&W Association will present the second concert of this season on Fri., June 9, at 8 p.m. in the Clinical Center auditorium.

The program, to be conducted by Mark Ellsworth, will include Mozart's 38th Symphony, in D ("Prague"), the Concerto No. 3 in E flat for French Horn and Orchestra by Mozart, and Robert Schuman's First Symphony, in B flat ("Spring").

The horn soloist in the Mozart concerto will be Samuel Ramsey, a member of the National Gallery Orchestra in Washington. He has also performed with the Philadelphia and the National Symphony Orchestras.

Admission to this concert is free, and no tickets are required. All NIH personnel, their families, friends, and neighbors are invited.
Nelda Alcorn finds research nursing both challenging and rewarding.—Photo by Tom Joy.

state board examination and received her R.N.

Socrates said, "Fields and trees teach me nothing; but people in the city do." Taking the advice of the Greek philosopher, Nelda selected the Washington area.

After several interviews in other hospitals she came to NIH in September 1966. She was motivated by what she saw in the field of medical research going on here, and realized that research nursing offered an opportunity to increase her knowledge of nursing in general.

Like many other newcomers here, she found the size of the Clinical Center confusing. After a 2-week orientation period she relaxed, and in a few more weeks adjusted completely to her new surroundings.

In the Clinical Center Nursing Department, Heart Nursing Service, where she was assigned to the Metabolic unit in 8 East, Nelda discovered that research nursing is more exciting than general nursing.

Her hours are different, too. When most people have watched their final television program for the evening, Nelda Alcorn is donning her cap and uniform to start her day's work—at midnight.

Keeps Busy

Although this appears to be a lonesome task of duty, actually, the opposite is true. Not only are there others working the same shift, but activity goes on at only a slightly slower pace than during the day.

Even though the patients are sleeping, there is much paper work to be done, in addition to checking charts, making rounds, preparing and administering medicine.

Fortunately, Miss Alcorn works a rotating shift and both tours of duty give her an opportunity to see the Washington area during her leisure time in her foreign compact. To help round out her social life she joined the Junior Officer's Association.

Views Stated

Her reaction to a question put to her about working at the NIH was: "I've found that research nursing, comparatively speaking, is different from working in a general hospital. In a general hospital a patient is under the care of a nurse for only 2 to 3 weeks at a time, whereas at the Clinical Center a patient may be under study from 7 to 8 months.

"Further, the studies which I have seen done here have proved interesting and have broadened my knowledge of nursing."

Pretty, green-eyed and dark-haired Nelda Alcorn hopes to return to school for two years, to enable her to acquire a Bachelor of Science degree.

In animal room, Ronald Gomes checks exhaust filter and hose on ventilated cage.—Photos by Ralph Fernandez.

DRS's Environmental Services Branch Helps Minimize Virus Research Hazards

By Kathleen duBois

One cold fact investigators know about "hot" viruses is this—they can be dangerous. Scientists working in the growing field of virus research face the risk of infection to themselves, and the danger of invalidating experiments by cross-contamination among those experiments conducted in the same area.

To help scientists minimize both risks is a concern of the Environmental Services Branch of the Division of Research Services, ESB's containment for Dr. Stewart was set up a barrier between the infectious, potentially hazardous agents and the laboratory workers.

One part of the barrier is a ventilated animal cage, a unique isolation unit for holding infected animals. Although the principle of a ventilated cage has been used elsewhere, only as it has been developed and refined by ESB engineers is it useful in most ordinary laboratory situations.

The protection is afforded by an arrangement of air intake and exhaust filters on the cage lid. Room air is taken into the cage through an absolute filter, passed through the cage, and out through a second absolute filter into a system of hoses that receives the exhaust from 48 separate cages.

Advantages Are Many

Thus, no organisms can enter a cage from the room, nor enter the room from a cage. And investigators are able to keep animals infected with different organisms in the same room without the need for space-consuming conventional isolators.

Negative pressure maintained inside the cages permits passage of food and water into the cages through an opening in the lid without allowing organisms in the cage to be disseminated into the room air.

In developing the ventilated cage, solutions had to be found to a number of problems—design of the stainless steel cover, the filters, the locking device, a new watering device, and suitable cover gasket material and design to make the cage air tight. In addition, the cage itself had to be of a material that would retain its transparency.
the far-flung research activities of the NIH are the concern of

THE OFFICE OF INTERNATIONAL

At the International Rice Research Institute (above left) in Los Banos, Philippines, work on the development of more durable and more nutritious strains of rice goes forward under an NIH research contract coordinated by the OIR. On a recent visit there Dr. Philip Ross of OIR was taken on a tour of the rice fields where an experimental strain of rice with an improved lysine content is under cultivation. Shown from left are Dr. Robert F. Chandler Jr., Director of the Rice Institute; Dr. Nevin Scrimshaw, Chairman of the Committee on International Research, and Dr. Bienvenido O. Juliano. Dr. Juliano, a chemist, has the NIH research contract for developing the new rice strain.

Dr. Said examines a farmer’s eye during a house-to-house screening throughout the area.

RIGHT—

Visual screening tests are conducted at village center.

THE OIR administers the NIH Special Foreign Currency Program which supports overseas scientific activities within the program interest of the NIH.

The NIH Blindness Register Demonstration currently being conducted in Egypt is one such activity.

Dr. Mohyi El Din Said of the University of Alexandria in Egypt, Dr. Hyman Goldstein, formerly of NINDB and now with the Children’s Bureau of DHEW, and Ronald Jacobson, NINDB, are the scientists involved in this collaborative effort. The project is designed to complement and extend the efforts of the Institute’s Model Reporting Area for Blindness Statistics.
THE OIR serves as the U.S. Secretariat for the U.S.-Japan Cooperative Medical Science Program, which is designed to pool the medical research knowledge and resources of the two countries on diseases of special concern in Asia. This spring, members of the U.S. delegation met at the NIH to review the technical progress of the panels for each disease category under study. (See photo at right.)

Representing the NIH at the Third Far East Symposium on Nutrition in Manila were Dr. Arnold Schaefer (second from left), Head of OIR's Nutrition Section, and Dr. Ogden C. Johnson (fourth from left), Assistant Head. With them (from left) are Dr. Fred Stare, Harvard School of Public Health; Dr. Thomas Dublin, AID, and Dr. William H. Sebrell Jr., a former Director of NIH, now director of Columbia University's Institute of Nutrition Sciences.

THE OIR administers the NIH program for International Centers for Medical Research and Training. The program was established in 1960 to advance the status of the health sciences in the U.S. and thereby the health of the American people “by expanding research and research training between U.S. universities and selected foreign institutions and investigators.”

Institutions participating in the ICMRT Program are the University of California at San Francisco; Louisiana State University and Tulane University, New Orleans, La.; the University of Maryland and Johns Hopkins University, Baltimore, Md.

LEFT—

Studies on Chagas Disease in Costa Rica are being carried on under the ICMRT Program by LSU in collaboration with the University of Costa Rica in San Jose. The child pictured is undergoing xenodiagnosis with three different species of triatomids, a procedure used routinely in the field.

Under the ICMRT Program, the University of California is collaborating with the Institute for Medical Research, Kuala, Malaysia, and the University of Singapore on blood group and other genetic studies on Malayan aborigines pictured above.
Dr. Charles H. Grogan Dies After Long Illness

Dr. Charles H. Grogan, a research chemist in the Drug Development Branch, Chemotherapy, National Cancer Institute, died May 10 in Georgetown University Hospital after a long illness.

Born in Burke, Va., in 1918, Dr. Grogan earned the B.S. and M.A. degrees from George Washington University, and the Ph.D. from Georgetown University. In 1952 he joined NCI as a biochemist in the Environmental Cancer Section, Office of the Associate Director in Charge of Research.

As a member of the Chemistry Section, Cancer Chemotherapy National Service Center, NCI, Dr. Grogan was assigned to George-town University Medical Center from 1959 to 1964. He served in the Drug Evaluation Branch, Cancer Chemotherapy National Service Center, from 1964 until he joined the Drug Development Branch in 1966. He is survived by his father and a brother.

Dr. Shock Is Awarded Citation for Service By Retirement Societies

Dr. Nathan W. Shock, Chief of the National Institute of Child Health and Human Development's Gerontology Research Center, was awarded a Citation for Service by the Area Conference of the American Association of Retired Persons and the National Retired Teachers Association recently in Baltimore.

Dr. Ethel Percy Andrus, President of the two societies presented the award to Dr. Shock “in appreciation of his significant and valued contributions to the enrichment of retirement living.”

Dr. Shock is a leading investigator and writer in the field of gerontology and is currently President-Elect of the Science, the American Association of University Professors, the Medical Society of Virginia, Richmond Academy of Medicine, American Association of Public Health Dentists, Federation Dentaire Internationale, District of Columbia Dental Society, and the Committee on Dentistry of the National Research Council.

Dr. Kreshover was cited for expending the role of dentistry.

of the highest honors awarded to a member of the USPHS Commissioned Corps, in 1965.

Dr. Kreshover received the D.D.S. degree from the University of Pennsylvania School of Dentistry in 1933, the Ph.D. in clinical medicine and pathology from Yale University in 1942, and the M.D. degree from New York University School of Medicine in 1949.

Affiliations Listed

He is Consultant to the American Dental Association Council on Dental Research; a past president of the International Association for Dental Research; a Fellow, American Association of Public Health Dentists; Fellow, American Public Health Association; and Associate, International Academy of Oral Pathology.

Dr. Kreshover is also a member of the American Academy of Oral Pathology, American Association of University Professors, the Medical Society of Virginia, Richmond Academy of Medicine, American Association of Public Health Dentists, Federation Dentaire Internationale, District of Columbia Dental Society, and the Committee on Dentistry of the National Research Council.

3 From NIH Give Papers

The 275th meeting of the Washington Branch of the American Society for Microbiology was held at the NIH Clinical Center auditorium recently. General theme for the meeting was “What are your cancer research interests in microbiology?”

Papers presented by NIH personnel were: “Evolution of the Role of Medical Technologists in Microbiology,” Dr. Viola Mae Young; “Pathway Trends in Medical Technology,” Dr. Norman B. McCullough, National Institute of Allergy and Infectious Diseases; and “Medical Technologists: Children of the ASCP,” Miriam Bowman, CC medical technologist.

The film “In a Medical Laboratory” was also shown.

Dr. Lloyd G. Herman, Division of Research Services, Environmental Services Branch, is president of the local chapter of the American Society for Microbiology. Cynthia O'Connor, National Cancer Institute, Medicine Branch, is president of the D.C. chapter of the American Society of Medical Technologists.

Five New Members Join the CC ‘Gallon Donor Club’

The Clinical Center Blood Bank reports that four NIH staff members joined the “gallon donor club.” They are Russell D. Brown, DRS; Edward Steers Jr., NIAMD; Marcella P. Gibberman and Melvin Kohn, NIMH.

In addition, Claude W. Wessells Jr., Coast & Geodetic Survey, a regular donor at the CC Blood Bank, reached the “gallon donor” mark.

Milton Skolaut Co-author Of Article on Pharmacy Honored at Convention

Milton W. Skolaut, chief of the Clinical Center Pharmacy Department, was honored at the recent annual convention of the American Pharmaceutical Association and affiliated societies in Las Vegas, Nev.

Mr. Skolaut shared an award with Jules M. Meisler, a former CC pharmacist. The two men were coauthors of the best article published by Federal pharmacists during 1966.

The article described extemporeaneous sterile compounding of intravenous additives at the CC, and recommended the hospital pharmacy as the logical place for such compounding.

Convention Role Noted

The article was published in the American Journal of Hospital Pharmacy, Vol. 23, October 1966.

At the convention, Mr. Skolaut was chairman for activities celebrating the 25th anniversary of the American Society of Hospital Pharmacists. He was also named chairman of the ASHP’s committee on accreditation for the coming year. The committee surveys hospital pharmacy residency programs and recommends approval or disapproval of accreditation.

Mr. Skolaut is a former president of the ASHP.
through repeated autoclaving.

The second part of the barrier between the investigator and his hazardous experiments is an air-tight glove box separating the laboratory from the animal room in Dr. Stewart's suite. It is within this glove box, known technically as a "microbiological safety cabinet," that any procedures are performed involving direct contact with the animals, such as injections and autopsies.

Like the ventilated cage, the glove box is also under negative pressure, with the exhaust as well as the influent air passing through ultra-high-efficiency filters. While the glove box, too, is not a new development, this particular one was designed by ESB to be equipped with special accessories for Dr. Stewart's needs.

Accessories Described

These accessories include an airlock built into one end of the glove box for material coming in, and an autoclave built into the other end to decontaminate everything leaving, such as animal cages, bedding, and instruments.

The one exception, of course, is live animals. They can be put into a clean cage through a transfer tube (like a miniature airlock) in the bottom of the glove box.

Another unique feature of this glove box is that it can be worked unattended, and the exhaust is also visible at one end of the glove box. It is equipped with electrical outlets as well as gas, and a sink with hot and cold running water.

Scientists interested in discussing equipment for bioburden control are invited to call Warren V. Powell, Chief of ESB's Bioburden and Sanitation Unit, Ext. 66171.

Devec Glazer, biologist in Dr. Stewart's laboratory, opens a ventilated cage containing inoculated hamsters. The autoclave door is visible at one end of the glove box.

Dr. Heppel to receive rare tribute from fellow scientists at the NIH.

DEVEG GLAZER, biologist in Dr. Stewart's laboratory, opens a ventilated cage containing inoculated hamsters. The autoclave door is visible at one end of the glove box.

ENVIRONMENTAL
(Continued from Page 2)

through repeated autoclaving.

The second part of the barrier between the investigator and his hazardous experiments is an air-tight glove box separating the laboratory from the animal room in Dr. Stewart's suite. It is within this glove box, known technically as a "microbiological safety cabinet," that any procedures are performed involving direct contact with the animals, such as injections and autopsies.

Like the ventilated cage, the glove box is also under negative pressure, with the exhaust as well as the influent air passing through ultra-high-efficiency filters. While the glove box, too, is not a new development, this particular one was designed by ESB to be equipped with special accessories for Dr. Stewart's needs.

Accessories Described

These accessories include an airlock built into one end of the glove box for material coming in, and an autoclave built into the other end to decontaminate everything leaving, such as animal cages, bedding, and instruments.

The one exception, of course, is live animals. They can be put into a clean cage through a transfer tube (like a miniature airlock) in the bottom of the glove box.

Another unique feature of this glove box is that it can be worked unattended, and the exhaust is also visible at one end of the glove box. It is equipped with electrical outlets as well as gas, and a sink with hot and cold running water.

Scientists interested in discussing equipment for bioburden control are invited to call Warren V. Powell, Chief of ESB's Bioburden and Sanitation Unit, Ext. 66171.

Devec Glazer, biologist in Dr. Stewart's laboratory, opens a ventilated cage containing inoculated hamsters. The autoclave door is visible at one end of the glove box.

ENVIRONMENTAL
(Continued from Page 2)

through repeated autoclaving.

The second part of the barrier between the investigator and his hazardous experiments is an air-tight glove box separating the laboratory from the animal room in Dr. Stewart's suite. It is within this glove box, known technically as a "microbiological safety cabinet," that any procedures are performed involving direct contact with the animals, such as injections and autopsies.

Like the ventilated cage, the glove box is also under negative pressure, with the exhaust as well as the influent air passing through ultra-high-efficiency filters. While the glove box, too, is not a new development, this particular one was designed by ESB to be equipped with special accessories for Dr. Stewart's needs.

Accessories Described

These accessories include an airlock built into one end of the glove box for material coming in, and an autoclave built into the other end to decontaminate everything leaving, such as animal cages, bedding, and instruments.

The one exception, of course, is live animals. They can be put into a clean cage through a transfer tube (like a miniature airlock) in the bottom of the glove box.

Another unique feature of this glove box is that it can be worked unattended, and the exhaust is also visible at one end of the glove box. It is equipped with electrical outlets as well as gas, and a sink with hot and cold running water.

Scientists interested in discussing equipment for bioburden control are invited to call Warren V. Powell, Chief of ESB's Bioburden and Sanitation Unit, Ext. 66171.

Devec Glazer, biologist in Dr. Stewart's laboratory, opens a ventilated cage containing inoculated hamsters. The autoclave door is visible at one end of the glove box.

ENVIRONMENTAL
(Continued from Page 2)

through repeated autoclaving.

The second part of the barrier between the investigator and his hazardous experiments is an air-tight glove box separating the laboratory from the animal room in Dr. Stewart's suite. It is within this glove box, known technically as a "microbiological safety cabinet," that any procedures are performed involving direct contact with the animals, such as injections and autopsies.

Like the ventilated cage, the glove box is also under negative pressure, with the exhaust as well as the influent air passing through ultra-high-efficiency filters. While the glove box, too, is not a new development, this particular one was designed by ESB to be equipped with special accessories for Dr. Stewart's needs.

Accessories Described

These accessories include an airlock built into one end of the glove box for material coming in, and an autoclave built into the other end to decontaminate everything leaving, such as animal cages, bedding, and instruments.

The one exception, of course, is live animals. They can be put into a clean cage through a transfer tube (like a miniature airlock) in the bottom of the glove box.

Another unique feature of this glove box is that it can be worked unattended, and the exhaust is also visible at one end of the glove box. It is equipped with electrical outlets as well as gas, and a sink with hot and cold running water.

Scientists interested in discussing equipment for bioburden control are invited to call Warren V. Powell, Chief of ESB's Bioburden and Sanitation Unit, Ext. 66171.

Devec Glazer, biologist in Dr. Stewart's laboratory, opens a ventilated cage containing inoculated hamsters. The autoclave door is visible at one end of the glove box.

ENVIRONMENTAL
(Continued from Page 2)

through repeated autoclaving.

The second part of the barrier between the investigator and his hazardous experiments is an air-tight glove box separating the laboratory from the animal room in Dr. Stewart's suite. It is within this glove box, known technically as a "microbiological safety cabinet," that any procedures are performed involving direct contact with the animals, such as injections and autopsies.

Like the ventilated cage, the glove box is also under negative pressure, with the exhaust as well as the influent air passing through ultra-high-efficiency filters. While the glove box, too, is not a new development, this particular one was designed by ESB to be equipped with special accessories for Dr. Stewart's needs.

Accessories Described

These accessories include an airlock built into one end of the glove box for material coming in, and an autoclave built into the other end to decontaminate everything leaving, such as animal cages, bedding, and instruments.

The one exception, of course, is live animals. They can be put into a clean cage through a transfer tube (like a miniature airlock) in the bottom of the glove box.

Another unique feature of this glove box is that it can be worked unattended, and the exhaust is also visible at one end of the glove box. It is equipped with electrical outlets as well as gas, and a sink with hot and cold running water.

Scientists interested in discussing equipment for bioburden control are invited to call Warren V. Powell, Chief of ESB's Bioburden and Sanitation Unit, Ext. 66171.
NIH Art Show to Continue at the CC Through June 19

Dr. James Stabenau, NIMH, prepares to unload his prize-winning walnut sculpture. The sculpture, "Lovers," is being shown mounted on limestone pedestals.

Chairman Walter Clark shown alongside one of the show’s most interesting entries—"The Resurrected Parts" by Daphne Don Boer.

Norma Eskenazi receives Best in Show award for her painting "Dry Dock" (in background) from Mr. Liljegren. At left is Mrs. Sessoms.

The Ninth Annual NIH Art Show, sponsored by the R&W Association opened May 22 in the lobby bay of the Clinical Center.

Fifty-two artists—all employees or family of employees of NIH, NIMH or other components of the PHS—accounted for the 94 entries in painting, sculpture, and graphics categories.

Mrs. Stuart M. Sessoms, wife of the Deputy Director of the NIH, is honorary chairman of the Art Show.

Ervin J. Liljegren, NIAMD, Chairman of the R&W Recreation Committee, awarded the prizes to the winners.

Judges were Adelyn Breeskin, former Director of the Washington Gallery of Modern Art; Frank Wright, instructor at the Corcoran School of Art; and Samuel Bookatz, noted Washington artist.

Walter Clark, NIMH, is chairman of the Art Show, which will continue through June 19.

Photos by Ed Hubbard

Chairman Walter Clark shown alongside one of the show’s most interesting entries—"The Resurrected Parts" by Daphne Don Boer.

Dr. Kehl Markley 3d, NIAMD, self-taught member of the pop school of art, was among the first to sign up for the Art Show. He entered "Eve," which he's holding, and "War Paint."