Nobel Laureate Awarded NCI Grant to Establish Tumor Research Center

Dr. James D. Watson, 1962 Nobel Prize winner in Medicine and Physiology, was awarded a National Cancer Institute grant to establish a tumor virus research center at the Cold Spring Harbor Laboratory of Quantitative Biology on Long Island, N.Y.

Dr. Watson, a pioneer in molecular biology, shared the Nobel Prize with Drs. Francis Crick and Maurice Wilkins for elucidating the structure of DNA.

Genetic Analysis Gives Clue

The center will conduct genetic and biochemical studies of the tumor viruses SV-40 and polyoma. These small DNA viruses are capable of causing tumors in animals and changes in the appearance of tumor cells in laboratory culture.

Through genetic analysis it is considered possible to find out what these viruses do, and thus to discover the cause of malignancy.

Dr. Watson and associates will conduct other lines of investigation. These will include various aspects of the synthesis of viral specific DNA, RNA, and protein, and the role of temperature in DNA synthesis.

When Cherry Blossoms Bloom (in Japan)
Dr. Witkop Lectures on Light in Nagoya

By Katie Broberg

“At the time of the cherry blossoms I am very happy to lecture on the day of light (Sunday) in the ‘land of the rising sun’ on some reactions involving the use of light (photochemistry).”

With these words spoken in Japan Dr. Bernhard Witkop, chief of the Laboratory of Chemistry, National Institute of Arthritis and Metabolic Diseases, started his lecture on “Progress of Pharmacodynamic Amines” at the 86th annual meeting of the Japanese Society of Pharmaceutical Chemistry at Nagoya.

Dr. Witkop, who was recently elected to the National Academy of Sciences, was the only invited American scientist among the foreign participants.

Following the lecture he won an (See CHERRY BLOSSOMS, Page 8)

NHI Surgeons Implant Nuclear-Powered Pacemaker in Dog to Test Reliability

A light, compact nuclear-powered cardiac pacemaker was successfully implanted in a dog here on May 26 by surgeons of the National Heart Institute’s Surgery Branch to test its total reliability in animals.

The device was developed and laboratory tested during the past 3 years by the Atomic Energy Commission with its principal contractor, the Nuclear Materials and Equipment Corporation, Apollo, Pa.

It features a plutonium-238 energy source designed to provide adequate and dependable power levels for 10 years.

The NHI studies call for implantation of the devices in several additional healthy dogs within the next 8 months, and could eventually lead to human trials.

These studies are being conducted by Drs. A. G. Morrow, chief of the NHI Branch, Dr. Peter L. Frommer, chief of the NHI Myocardial Infarction Program, and Dr. Joseph Pierce.

Artificial pacemakers maintain normal heartbeat in patients with “heart block.” This condition usually results from disease-induced injury to the heart’s specialized conduction system, which normally originates and conveys to all parts of the heart the electrical impulses that cause the heart to beat.

But injuries to the system may impede or disrupt the normal flow of impulses. If untreated, heart block may slow heart rate sufficiently to decrease its output of blood below the level required to sustain normal activity; or it may lead to disturbances in heart rhythm that may progress to heart stoppage and death.

The nuclear-powered pacemaker offers durability not found in battery operated devices, since the mercury cells that power most conventional artificial pacemakers run down and require replacement.

Although the batteries are designed to last up to 5 years, most surgeons elect to replace them more often than this—usually after 24 months. (See PACEMAKER, Page 6)

Dr. Pahl Named NIGMS Deputy Assoc. Director For Scientific Programs

Dr. Herbert B. Pahl’s appointment as Deputy Associate Director for Scientific Programs of the National Institute of General Medical Sciences was announced by Dr. Frederick L. Stone, Institute Director.

In his newly established position, Dr. Pahl will conduct studies for planning long-range, coordinated research and manpower development programs to meet current and future national health needs in the scientific areas of concern to NIGMS.

For the past 3 years, while on leave from NIH, he has been staff director for the Committee on Research in the Life Sciences.

Dr. Pahl will conduct studies for planning long-range, coordinated research and manpower development programs to meet current and future national health needs in the scientific areas of concern to NIGMS.

For the past 3 years, while on leave from NIH, he has been staff director for the Committee on Research in the Life Sciences of the National Academy of Sciences, National Research Council.

This committee was appointed in 1966 to conduct an intensive study into the status of research, training, and financial support in the life sciences, to appraise the nature and level of understanding attained thus far, and to make recommendations for appropriate courses of action.

Dr. Pahl received his B.A. degree in chemistry and biology with honors from Swarthmore College in 1950.

He was awarded his M.S. degree in 1951 and his Ph.D. in 1954, both in biochemistry from the University of Michigan. (See DR. PAHL, Page 8)
Elizabeth Whalin, Nurse for First Patient
At Clinical Center 16 Years Ago, Retires

By Thomas Bowers

Elizabeth Whalin, a clinical nurse who cared for the first patient admitted to the Clinical Center 16 years ago, has retired. "It was in 1953," she recalled recently, "I had been at NIH since 1949 and when the Clinical Center opened, I joined the cancer nursing service."

"I remember our first patient. He had been receiving treatment at George Washington University Hospital and participating in NIH studies. When the Clinical Center opened, he was transferred here and I was one of the nurses who helped care for him. I still have his picture at home."

With her retirement at the end of May, Mrs. Whalin completed a professional nursing career of over 30 years.

Mrs. Whalin had a rather uncertain start in life. At age 12, she was enrolled in a special school in Michigan last September. She quickly remedied that by completing high school in 3 years and going on to earn her R. N. from St. Elizabeths Hospital School of Nursing in 1934. She also took her 6th grade education.

As to the future, she plans to relax, go fishing occasionally—her favorite form of relaxation—and travel to see as much of the U.S.A. as she can.
The 139th Commencement exercises
Dr. Bernhard Witkop, NIAMD, Bldg. 10, Rm. 8N317.

Dr. Marston also delivered the Commencement Address.

The NIH Director's topic at the exercises was entitled "Science and Service: The Role of NIH And The Medical School."

In his address, Dr. Marston discussed the advancing role of the biological sciences. As an example he singled out the "unfolding field of genetics."

He also explained the "Growth and Functions of NIH," tracing the nucleus of the NIH research program from its inception in 1887 up to the present.

Dr. Marston also delivered the Commencement Address.

In his address, Dr. Marston discussed the advancing role of the biological sciences. As an example he singled out the "unfolding field of genetics."

He also explained the "Growth and Functions of NIH," tracing the nucleus of the NIH research program from its inception in 1887 up to the present.

Latest Participants in NIH Visiting Scientists Program Listed Here

AFTER WORKING HOURS
Exa Murray Competes With Bowlers From All Over—in Her Own Backyard

May 30 was a red letter day on Exa Murray's calendar in more ways than one.

First, and most obvious, it is a Federal holiday. But for Exa, secretary to Dr. Marshall Nirenberg, chief of the Laboratory of Biochemical Genetics, NIH, it also represented a chance to bowl her way to a one-week sabbatical in Europe.

On that day Exa competed with regional champions from 38 states and Canada in the finals of Brunswick's "Bowl Your Way to Europe Championship."

Dr. Johnsson-Hegyeli Named Medical Officer, Artificial Heart Program

Dr. Ruth Johnsson-Hegyeli has been named the Medical Officer in the Artificial Heart Program of the National Heart Institute. Dr. Theodore Cooper, NIH Director, announced the appointment.

Dr. Hegyeli will administer Artificial Heart contracts dealing with biological evaluation of components for the artificial heart.

Her major research interests include basic cell research and experimental pathology, particularly biocompatibility studies using tissue culture.

Dr. Hegyeli was born in Stockholm, Sweden. She received her undergraduate and graduate degrees from the University of Toronto—a B.A. in 1958 and her M.D. in 1962.

She interned at the Toronto General Hospital and was a research associate at the Institute for Muscle Research at the Marine Biological Laboratory in Woods Hole, Mass.

Prior to her appointment at NIH, Dr. Hegyeli had worked since 1967 on research contracts awarded by the Artificial Heart Program to Battelle Memorial Institute, Columbus, Ohio.

Dr. Johnsson-Hegyeli was appointed to the Artificial Heart Program of the National Heart Institute.

An excellent shot such as this gave Exa Murray a chance to compete in the "Bowl Your Way to Europe Championship."

paid trip to Washington, D.C., and a handsome plaque in the house roll-off.

Despite its closeness, Mrs. Murray spent her hard-won 3 days at the Washington Hilton.

"Of course, those who won in California got the same trip, but that's all right with me," she said.

She and the other 300 finalists were greeted by a brass band and attended a banquet on May 29 before the next day's roll-off at Bethesda's Riverboat.

On the big day Exa bowled 22 pins over her average—not quite what the champion winner did, but extremely good, nevertheless.

"It was just great to be in it," she said.

ε

NLM to Observe Summer Hours June 28 to Sept. 2

The National Library of Medicine will observe summer hours starting June 28 through Sept. 2.

Both the NLM Reading Room and the History of Medicine Division will be open from Monday through Saturday at 8:30 a.m. The Reading Room will close at 5 p.m. and the History of Medicine Division will close at 4:45 p.m.

The Library is closed on Sunday.

Dr. Charles P. Huttrer Dies; Was Special Asst. To Director of FIC

Dr. Charles P. Huttrer, special assistant to the Director of the Fogarty International Center, NIH, died Friday, May 30, in Holy Cross Hospital of a heart ailment.

A native of Vienna, Austria, Dr. Huttrer graduated from the University of Vienna in 1932 and the University of Innsbruck, Austria, in 1935.

He also graduated from the Vienna Conservatory of Music where he studied piano.

After working as a Research Fellow at the Sorbonne in Paris, Dr. Huttrer came to this country in 1940 and held research positions with several major pharmaceutical firms.

He joined NIH in 1951, serving in various scientific posts, including 4 years as chief of the NIH European Office in Paris, and 2 years as biomedical attache to the U.S. Mission in Geneva.

Besides his wife, Lucy, he leaves his mother, Mrs. Anna Huttrer of New Rochelle, N.Y.; a brother, Dr. Ernst Huttrer of Vienna; a daughter, Mrs. Jerry Haller, of Boston, and two grandchildren.

DR. PAHL

(Continued from Page 1)

From 1954 to 1957, he was a Sloan-Kettering Fellow and a National Cancer Institute postdoctoral fellow there.

Dr. Pahl came to NIH in 1960 from Vanderbilt University where he was an assistant professor.

From 1960 to 1962, he was scientist administrator in the Research Training Grants Branch of what was then the Division of General Medical Sciences.

In 1963, Dr. Pahl served as chief of the Special Research Resources Branch of the Division of Research Facilities and Resources and, in 1964, chief of the General Research Support Branch.
New compact artificial kidney developed under Institute contract has proven highly successful in human trials. Other types are in development.

Sophisticated instruments, such as the metabolic chamber, and volunteer subjects aid NIAMD in establishing data on normal and abnormal metabolic states. The Institute provided some of the data for space exploration.

Colonies of this Kokoa frog now are being grown by NIAMD in the hope that the powerful venom exuded by glands in its skin may eventually prove useful as a curative agent.

An unusual number and diversity of diseases challenge researchers of the National Institute of Arthritis and Metabolic Diseases.

Many arthritic disorders—such as rheumatoid arthritis and gout—together with a growing number of metabolic diseases—including diabetes and osteoporosis—comprise the Nation's most prevalent and crippling afflictions. But these represent only part of the NIAMD area of responsibility.

Developments of artificial kidneys; attempts to check cirrhosis of the liver; pioneer...
Arthritis and Metabolic Diseases

Rice

...and Don Jones

...ing work with organ transplants; nutritional studies; investigations of gastrointestinal, blood, bone, and skin disorders, and studies on cystic fibrosis and on endocrine and other dysfunctions present this Institute with a multitude of opportunities for health progress through research and research-training support.

Today the question no longer is whether these disorders can be controlled but rather when? Many already are becoming amenable to treatment or control as a result of the Institute's efforts.

from gout—one of the forms and knuckles are caused by formation of urate crystals reduce uric acid levels and drugs can control the acute pain.

In most laboratories, enzymes, bacteria, or bacterial by-products are produced in test tubes in small amounts. In this NIAMD laboratory, techniques and equipment are available to mass-produce biomaterials for research.

Chronic inflammatory granulation tissue has been removed surgically from patient's knee to determine whether this method will check rheumatoid arthritis destruction of joint structures.

NIAMD investigator prepares to weigh a germfree rat within its tank during a nutrition experiment.

While NIAMD has an extensive intramural program, it also supports several hundred research and training projects in non-federal institutions in every region.

Protein crystal is precisely positioned for a study of its structure through X-ray diffraction.
to 36 months to provide an extra margin of safety.

Even so, mercury batteries have run down within a few months after implantation, and remain a fairly common cause of pacemaker failure. This failure, sometimes occurring with little prior warning to the patient, can have serious consequences.

The nuclear-powered device, therefore, with its high reliability for a full 10 years, represents a major advance in pacemaker technology.

The nuclear power source is based on the principle of thermoelectricity—the direct conversion of heat to electrical energy. By joining certain metals which differ markedly in electrical conductivity, a thermocouple is formed. When heated at one end, the thermocouple generates an electrical current.

The pacemaker's thermocouple is composed of a copper and nickel alloy and a nickel and chromium alloy drawn into wire strands and woven into a glass tape.

Generates Current

Heat developed by the decay of plutonium-238 is used to heat the wires at one end, generating electrical current into a conventional pulse generator. The generator supplies the pacing pulses to the heart via conventional wire electrodes.

Plutonium-238 was chosen because it emits alpha particles which have high energy but very low penetrating power (they can be stopped by a thin piece of paper, for example).

With this combination of high energy and low penetration, only small quantities of isotope (about 0.5 grams) are needed, and no special radiation shielding materials are required. In fact, stray radiation is no greater than that from the radium dial of some wrist watches.

If the pacemaker performs up to expectations during the year or more of animal studies, clinical trials will be undertaken by the NIH and by Dr. Victor Parsonnet and George Meyers, Beth Israel Hospital, New York, N. Y., who also have been consultants to the AEC on the project.

Thesaurus on Sciences Printed By Computer Controlled Process

The Research Documentation Section, Statistics and Analysis Branch, Division of Research Grants, announces the publication of the second edition of the Medical and Health Related Sciences Thesaurus.

This edition was printed by the Government Printing Office Linostron system, a computer controlled cathode-ray-tube photo-typesetting process.

DHMES Stresses 'Service' to Assure Skilled Manpower For All Health Needs

Application of Vitamin A To Wounds Overcomes Retardation of Healing

Scientists working to improve care of the injured have found that Vitamin A applied directly to open wounds overcomes the retardation of healing caused by steroid drugs, notably cortisone.

Their research, supported by the National Institute of General Medical Sciences, may have solved a serious problem in surgery.

Because cortisone inhibits inflammation, it helps millions of patients with rheumatic fever, arthritis, gout and other inflammatory diseases.

However, inflammation is needed to trigger the body's natural healing processes following injury.

Open wounds in patients receiving cortisone tend to heal poorly, the risk of infection is much greater, and post-surgery recovery periods can be quite lengthy.

The finding that Vitamin A counters the injury safely and effectively without taking patients off cortisone or reducing its dosage was disclosed at a recent meeting of the American Surgical Association.

According to Dr. Thomas K. Hunt and co-workers at the University of California San Francisco Medical Center, application of Vitamin A to open wounds among cortisone patients at the Center induced successful healing.

Wide Range of Wounds Treated

Wounds treated ranged from large non-healing ulcers of the limbs to severe infectious lesions of the chest.

In several cases, wounds that had stubbornly resisted healing for weeks healed in a matter of days. Dr. Hunt also reported that Vitamin A administered orally also stimulates wound healing but not as well as direct application.

He cautioned that its systemic use could interfere seriously with the therapeutic benefit of steroid drugs elsewhere in the body.

No effects on healing were observed from Vitamin A treatment of wounds in patients who were not receiving cortisone or other steroid drugs.

Dr. Hunt and his researchers say the healing effect stems uniquely from interaction between cortisone and Vitamin A at some as yet unknown point within the wound itself.

proessions education.

The Division awards basic and special improvement grants to help institutions in their educational programs and to expand enrollment.

Every full-time accredited school of medicine, dentistry, osteopathy, (See SERVICE, Page 7)
Joseph M. Morel, CC, Dies in Auto Accident

Joseph M. Morel, 48, a supervisory radiographic research technologist in the Clinical Center Department of Diagnostic Radiology, died of injuries suffered in an automobile accident on May 23. Mr. Morel was on his way to work. Mr. Morel joined the Clinical Center in 1952, a few months before the Center was officially opened. At the time of his death, he had become nationally known for his accomplishments in the field of X-ray technology, and was a pioneer in developing new radiographic techniques.

Center as a medical X-ray technician in 1952, a few months before the Center was officially opened. At the time of his death, he had become nationally known for his accomplishments in the field of X-ray technology.

He was considered a pioneer in development, modification, and initiation of new diagnostic radiographic techniques and devices that contributed to the success of many NIH clinical research projects. In 1956, at the Annual Meeting of the American Roentgen Ray Society in Washington, D.C., Mr. Morel was the first technologist ever to sponsor an exhibit in the society's medical exhibition hall.

Invents X-Ray Device

His exhibit was a model of a tomographic device that he invented. The device produced X-ray photographs of selected planes or organs of the body and obscured other areas in front and behind the area of interest.

For his achievement, he shared an award of a bronze medal presented to him by the society.

Among his other contributions to research and X-ray technology were: the development of an animal technic chart to standardize radiographic work on animals and specimens; collaboration in the development of an X-ray training course; development of a head-holding device for use in cerebral angiography; construction of a small cassette for use in surgery and another cassette for use during hip pinnage.

Mr. Morel had also contributed several articles pertinent to his field.

He was born in Beacon, New York, and came to Washington, D.C., in 1946. He graduated from Catholic University with a B.A. degree in biology. He worked at Georgetown University Hospital before joining NIH.

Active in Organizations

Mr. Morel was active in several professional organizations. He was past president of the Society of Registered X-ray Technicians of Washington, D.C., for two terms, and a member and later chairman of the Radiation Safety Committee of the American Society of X-ray Technicians.

He also served as a consultant to the U.S. Civil Service Commission assisting in the revision of Standards for job classifications of the X-ray technician category.

Mr. Morel leaves his wife, Marjorie; three daughters, Mary, Patricia and Ann, and two sons, Christopher and Joseph.

SERVICE

(Continued from Page 6)

optometry, and podiatry participated in this program during the past Fiscal Year.

The Division serves as the management arm for these grant programs, sharing administrative responsibility with the Divisions of Physician Manpower, Dental Health, Nursing, and Allied Health Manpower.

John Westcott, chief, Health Manpower Grants Branch, feels a “deep sense of satisfaction in being a part of the grant activity.” He explained that school officials frequently express gratitude for assistance offered by Bureau grant programs.

The Foreign Students Educational Branch, a PHS activity for 20 years, arranges for orientation, training, and education for foreign nationals. The Branch, headed by William S. Wilson, works with AID and NIH scientists at the Pakistan-Seato Cholera Research Laboratory demonstrated under epidemic conditions, an oral solution that helped save lives of cholera victims. A patient surveys bottles containing 96 liters of intravenous fluid required for recovery. Oral therapy cut such requirements by 70-80 percent.

Dr. Gordon Zubrod, NCI, Given Honorary Degree

Dr. C. Gordon Zubrod, Scientific Director for Chemotherapy, National Cancer Institute, will be awarded an honorary Doctor of Science degree by the College of the Holy Cross. It will be given to him at the 123rd commencement tomorrow (Wednesday, June 11).

Dr. Zubrod, a 1936 graduate of the College, is being honored for his achievements as an organizer of clinical investigations in anticancer drugs, and for his leadership of the drug research and development activities of NCI.

Recently Dr. Zubrod was chosen to deliver the keynote address at the retirement testimonial dinner for the Rev. Joseph F. Busam, S.J., who for 40 years had taught pre-medical and pre-dental courses at Holy Cross.

Dr. Fullmer Named Head Of New NIDR Branch

The establishment of the Experimental Pathology Branch in the National Institute of Dental Research has been announced by Dr. Seymour J. Kehresover, NIDR Director.

The Branch, headed by Dr. Harold R. Fullmer, contains three sections. The Histochemistry Section, which will increase clinical investigations capability, will be under the immediate supervision of Dr. Fullmer.

The Oncology Section, directed by Dr. James E. Hamner, will emphasize basic and clinical research on oral cancer.

The Diagnostic Pathology Section, with Dr. Howell O. Archard, Jr., as chief, will provide NIDR with additional opportunities for pathological examination of patient tissues from both intramural and extramural sources.

Dr. Kehresover also announced a change in the name of the Laboratory of Histology and Pathology to the Laboratory of Biological Structure.
Cerebral Palsy Pamphlet
By NINDS Discusses
Methods of Prevention

A method for preventing cerebral palsy is detailed in the seventh edition of Cerebral Palsy, Hope through Research, recently issued by the National Institute of Neurological Diseases and Stroke.

A new serum can now be used to prevent damage to Rh babies. Identification early in pregnancy may also lead to prevention of a rare type of CP, the Lesch-Nyhan syndrome.

One Woman in 10 Runs Risk

It is estimated that one woman in 10 may have Rh-negative blood. In the past, if she married an Rh-positive man, their children ran the risk of an Rh blood conflict which could produce jaundice, cerebral palsy, mental retardation, and hearing problems.

All Rh-negative mothers now can receive the new serum, Rho (D) Immune Globulin, within 72 hours after delivery of an Rh-positive child. This treatment will prevent the mother’s sensitization to her child’s Rh-positive blood and protect her future Rh-positive pregnancies from the threat of cerebral palsy.

Single copies of the 7-page pamphlet are available from the NINDS Information Office. Copies also are for sale by GPO for 10 cents.

CHERRY BLOSSOMS

(Continued from Page 1)

immediate storm of applause from the audience of more than 600 scientists. Soon he was surrounded by a large crowd of colleagues, friends, and former associates who had been guests or participants in the visiting scientists’ program of NIH during the last 13 years.

Fluent in Several Languages

Dr. Witkop also speaks fluent (Shakespearean) English, (middle-high and Swiss) German, French, and Italian, and is well acquainted with Dutch, Greek, and Latin. He acquired his proficiency in Japanese from his many Japanese collaborators in the Laboratory of Chemistry.

He is a dedicated Japanophile who tries to visit Japan every other year.

Before this recent visit he was over there in 1966 when he addressed the Annual Congress of the Japanese Chemical Society.

Several years ago, when Dr. Witkop first spoke to a Japanese scientific audience in its native tongue, he was featured in one of Japan’s largest newspapers. The story pointed out that he was the first Western chemist ever to lecture in Japanese.

Hereditary Differences in Eating Habits Has Effect on Caries Activity in Rats

Hereditary differences in eating habits account for much of the difference in caries activity of inbred strains of rat.

Any strain of rat will develop tooth decay if it is infected with suitable bacteria and fed a diet that supports a sufficiently high rate of bacterial activity. However, collaborative research by Dr. Rachel Larson, National Institute of Dental Research, with Drs. Klaus G. Konig and B. Guggenheim (University of Zurich, Switzerland), reveals that, even under these circumstances, there are differences in caries activity patterns among genetically different strains.

Osborne Mendel (OM) rats under most circumstances develop more decay than NIH Black Rats (BR) even when both strains are reared under the same conditions.

Therefore, using special equipment available in the Zurich laboratories, experiments were designed to study the normal feeding habits of these two strains of rats in relation to the development of caries, and to learn the effect of their caries experience of imposing the same eating pattern on both strains.

Two Groups Tested

In experiment I, two groups each of OM’s and BR’s were free-fed a caries test diet. Eating patterns were recorded and caries development compared in groups: a) with indigenous bacteria only, b) additionally infected with an antibiotic-resistant streptococcus associated with smooth surface caries, and c) treated with an antibiotic to depress their own bacteria and then infected with the same streptococcus used in group b.

In experiment II, the caries activity was compared under free-feeding and when fed automatically on the same high-frequency basis.

In the first experiment, the BRs had less caries than the OM rats. Both strains had less caries on a diet which supports caries in the suici or grooves, than on another diet which also supports caries on smooth surfaces in most animals.

OM Rats Eat Frequently

The second experiment showed that OM’s habitually eat and drink more frequently and feed for about twice as many minutes a day as the BRs. In fact, most OM activity is associated with feeding, whereas BRs are active as many minutes a day, but eat faster and spend less time in the process than OMs.

All but one free-fed OM had considerable caries, whereas free-fed BRs had little caries. However, when both strains were induced by slight underfeeding to eat with the same high frequency of 36 meals per day, the level of caries in the OM rats continued to be close to that of the free-fed group whereas that of the BRs increased ten times.

The investigators conclude that although a strong challenge will produce caries, nevertheless hereditary factors such as eating habits, and differential responses to the

Science Attaches Visit NIH, Tour CC Facilities

The organization, facilities and work of the “new” NIH were explained to Science Attaches and other scientific staff who were visiting here from 17 foreign embassies on an all-day orientation held May 14.

A tour of Clinical Center facilities, a luncheon and an address by Dr. John Sherman, NIH Deputy Director, were included in the visit. The late Dr. Charles Buttrager who was chief, International Liaison Activities, Fogarty International Center, also welcomed the scientists.

Equipment Explained

Dr. Roger L. Black, CC Associate Director, greeted the scientists at the start of the tour.

Dr. Maitland Baldwin, chief of the NINDS Surgical Neurological Branch, explained some of the computerized equipment for the monitoring of patients during surgery.

During a tour of the clinical pathology and hematology laboratories, Dr. George Z. Williams, chief, Clinical Pathology Department, CC, pointed out that the hematology facilities serve both in-patient and out-patient needs.

Following his talk a number of visiting foreign scientists doing research at NIH were invited to a reception to meet with the science attaches.

Winners Martha Thomas, CC (I), and Ann McAuley, DRG, receive gift certificates from prize committee chairman Domenic Fuccillo, NIAID. Each week during the NIH Savings Bond Campaign the name of a participant in the Bond Payroll Savings Plan is drawn for a prize. Prizes are provided by merchants affiliated with the R&W discount program.

same cariogenic organisms when diet is controlled, can be important influences in an individual’s caries experience.

This research was reported in Archives of Oral Biology.