Cardiac Replacement Task Force Proposes Future Program Needs

At a press conference held Jan. 6, the National Heart and Lung Institute told of the recommendations made by its ad hoc Task Force on Cardiac Replacement for the advancement of heart transplantation and the development of artificial heart devices.

About 35 members of the press, television, and radio heard Dr. Theodore Cooper, NHLI Director, and Dr. Robert L. Ringler, NHLI Deputy Director, summarize the Task Force report. This was followed by a question and answer session.

All Problems Studied

The Task Force, appointed last November by Dr. Cooper, was charged with studying all problems surrounding the replacement of hopelessly diseased or damaged human hearts in persons below age 65, and to make recommendations concerning program needs in this field.

The Task Force was formed into four working groups whose missions were: 1) to estimate the number of candidates for cardiac replacement in the age group under 65 years; 2) to present the present state of cardiac transplantation and artificial heart development; 3) to explore the ethical, social, and psychological implications of cardiac replacement, and 4) to estimate the economic impact.

Dr. James R. Slagle, Division of Computer Research and Technology, received the U.S. Jaycees Award at an annual awards congress held January 16-17 in Santa Monica, Calif. Dr. Slagle was selected as one of America's Ten Outstanding Young Men of 1969.

Nominations for the awards are submitted by individuals, businesses, professional and educational groups and institutions. Nominees, between the ages 21-35, are selected by a panel of distinguished citizens.

Dr. Slagle, who is chief of the Heuristics Laboratory, DCRT, is an outstanding research mathematician. He is also a part-time college teacher.

Dr. Kenneth M. Endicott Receives 1st Pap Award

Dr. Kenneth M. Endicott was presented with the first Pap Award for Distinguished Service by the Pan-American Cancer Research Institute.

The award, which included a prize of $1,000, was given to him on Jan. 9 in Miami, Fla.

Since November 1969, Dr. Endicott has been Director, BEMT. For 10 years previously he had been Director of the National Cancer Institute.

The citation for the award noted that he had made outstanding contributions to cancer research.

Action of Drug, Rifampicin, Blocks Virus Particles; Opens New Research Avenues

National Institute of Allergy and Infectious Diseases and National Cancer Institute scientists have found the way a new antiviral drug, rifampicin, acts—it blocks assembly of virus particles.

This discovery opens a new approach to virus research and may lead to the development of better virus-fighting agents.

Rifampicin is a chemical derivative of rifamycin B, which was isolated from the fungus Streptomyces mediterranei in 1957, and was soon shown to have antibacterial properties.

Several derivatives of rifamycin B, including rifampicin, have been widely used in treating such bacterial illnesses as tuberculosis, leprosy, and staphylococcal infections.

It is known that rifampicin and related derivatives prevent bacterial multiplication by blocking synthesis in these organisms of ribonucleic acid (RNA)—an essential chemical.

Findings Differ

Recently, two separate groups of scientists in Israel and Scotland reported rifampicin active against certain viruses, as well as against bacteria. It was assumed that the drug exerted its antiviral effect in a similar fashion.

This may not be the case, according to findings reported in a recent issue of Nature by Dr. Bernard Moss, Edith N. Rosenblum, and Dr. Elud Katz, NIAID, and Dr. Philip M. Grimley, NCI.

Dr. Moss and his colleagues performed their experiments on vaccinia virus growing in tissue culture.

Vaccinia virus particles are made up of DNA—the viral genetic material—surrounded by a “coat” of protein and an outer membrane.

When the virus infects cells, its DNA replicates and also directs manufacture of viral RNA which, in turn, guides synthesis of viral proteins.

Using radioactive “tracer” chemicals, the scientists showed that rifampicin permits essentially normal synthesis of viral DNA, RNA, and protein.

They found, however, that the antibiotic blocks assembly of DNA and protein into mature virus particles.

Lipsett to Join NICHD; Will Direct Endocrine, Reproductive Studies

Dr. Mortimer B. Lipsett, National Cancer Institute, will join the National Institute of Child Health and Human Development. Dr. Lipsett, a national authority on endocrinology, has been head of NCI's Endocrinology Branch—and will direct and coordinate intramural research on reproductive biology and conception.

In announcing the change, Dr. Robert Q. Marston, NIH Director, noted that NICHD already has a major study underway on population and reproduction research.

"Dr. Lipsett will head the Reproduction Research Branch and will direct its efforts toward investigating the effects of the endocrine glands on the reproductive mechanisms.

"A complete understanding of this interaction could lead to the cure of many diseases.

(U.S.-Japan Seminar on Trigeminal Mechanisms Being Held in Honolulu)

Under the auspices of the United States-Japan Cooperative Medical Science Program, a 4-day seminar on mechanisms of oral-facial sensation and movement is being held Jan. 19-22 in Honolulu, Hawaii.

Dr. Ronald Dubner, chief of the Neural Mechanisms Section, National Institute of Dental Research, and Dr. Yojiro Kawamura, Osaka University, Japan, are serving as co-chairmen of the seminar.

Recent research on the basic neurophysiological mechanisms and correlated ultrastructure underlying sensory and motor function in oral and facial regions is being discussed.

The agenda includes such topics as thermoreceptor and mechanoreceptor activity, and brainstem, thamic, and cortical mechanisms.

The proceedings of the seminar will be published.
Administrative Services Meet Challenge With Ingenuity, They 'Make Do' With Less

The list is long, but understanding the reason for diminished quality in the services supporting NIH activities—reduction in number of personnel—may help employees exercise more patience.

Provides Essential Services

Despite manpower restrictions, however, the Office of Administrative Services has been doing everything possible to provide essential services in every area.

One service which affects all, the pneumatic tube system, is now being modified so that material may be sent between stations in seconds.

The majority of the tubes, except those in Bidg. 1 and 31, go through Bidg. 10. By means of an electronic device now being installed, tubes previously directed to their destinations manually will be automatically monitored and routed without delay.

The modification is scheduled for completion by Jan. 22. This system has already proved effective in Bidg. 31.

Another common source of distress is the housekeeping service—floors, for example, are not cleaned as often or as thoroughly as in the days of full employment. The sanitation industry has set a goal of having employees buy in smaller quantities, and research contracts are negotiated with 14 less people.

However, despite these and other inconveniences, “most NIH employees have accepted the cutbacks in a gracious and cooperative manner,” according to James B. Davis, Director of the Office of Administrative Services. Mr. Davis is soliciting all employees’ cooperation with the assurance that central services is “doing everything possible to carry on those functions which are essential to our overall endeavor.”
Monthly Seminars on Parasitology Research To Start January 29

The Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, will conduct a series of monthly seminars on aspects of research in parasitology. The seminars will be given by distinguished guest lecturers.

Professor Ernest Bueding, Department of Pathobiology, Johns Hopkins University, will start the series at 2 p.m., Jan. 29 in Bldg. 31, Wing C, Room 6.

He will talk on “Relationship between Conformation and Antischistosomal Activity of Nitrogerocyclic Compounds.”

Professor Bueding is known for his research in biochemical pharmacology and his contributions to the field of parasitology.

Future topics will include biochemistry and ecology problems.

Katie Broberg included In Book on Outstanding Young American Women

Katherine W. Broberg, a science writer with the National Institute of Arthritis and Metabolic Diseases, has been selected to appear in the 1969 edition of Outstanding Young Women of America.

She is an alumna of Dickinson College and was nominated for the honor by that school on the basis of her excellent record and subsequent accomplishments.

Selection is made by a board representing national women’s organizations. The board includes the American Association of University Women.

Miss Broberg joined NIH in 1966 as a member of the Information Intern Program. Since she has been with NIAMD her writing has included numerous newspaper and magazine features, and reports to Congress.

Armchair Traveler William King Retires; Future Plans to Reflect Past Activities

By Bari Attis

“Old travel men never die, they just continue along another road.” With this bit of philosophy, William King, NINDS travel officer, retired after 21 years at NIH.

Although he has been primarily an armchair traveler, Bill has followed a number of different roads during his 60 years. He traveled what was then a long road from a small upper Montgomery County, Md., town to go to work for People’s Drug Store in Washington, D. C.

From there, in 1941, he traveled across town to the Maritime Commission, where his job dealt with travel and budget arrangements for ports and landings all over the world. From Maritime in 1948 he came to NIH, and in 1957 to NINDS.

Paralleling his work experience, Bill King has also been traveling the road to higher education for most of his life. The one-room school in his home town offered only a public grade education—so Bill and some of the other students studied privately with a school teacher for another 3 years.

When he came to Washington, he began correspondence and night school business courses and took some business and accounting classes at Roosevelt High School.

Earns Diploma in 1960

Although he passed the Federal Service Entrance Examination (FSEEE) in 1949, he did not officially earn a high school diploma until 1960, one year before his daughter Linda earned hers.

Bill King says he’s not the kind of man “who can sit home and watch TV and drink beer every night.” In addition to work and study, Mr. King also has worked in the evenings and on weekends while he was held in an investment firm and as a real estate salesman.

His plans for retirement include going back to school at Montgomery College to obtain a permanent license to sell real estate in this area. He has not traveled far in the past, but Bill and his wife, Burnette, hope to drive to California and take a steamer trip to Hawaii in the near future.

With this long catalog of activities, it is amazing that he has time to think of hobbies but Bill King is also interested in sports: bowling, chess, and checkers. His greatest claim to fame, he says with a smile, was playing to a draw with two World Champion checker players in exhibition games in Washington.

At his retirement, Bill and his wife and daughter were greeted at an 8th floor party by many of his friends at NIH. Some of those coming to wish him well were people he had talked to for years on the telephone but had never met before.

History of Medicine Society Meets Thursday, Jan. 22

A meeting of the Washington Society for the History of Medicine will be held on Thursday, Jan. 22, at 8 p.m. in the Billings Auditorium, National Library of Medicine.

Dr. Saul Benison will speak on “The Role of the Rockefeller Institute and the Rockefeller Foundation in the Formation of Early Concepts of Polio.” Dr. Benison is History of Medicine professor, Graduate Faculty, University of Cincinnati.

He is the author of Tom Rivers: Reflections on a Life in Medicine and Science, for which he received the William H. Welch Award from the American Association for the History of Medicine.

The meeting is open to visitors.

Pima Indian Research Reveals the Prevalence Of Gallbladder Disease

A National Institute of Arthritis and Metabolic Diseases clinical research program on gallbladder inflammation and gallstones will be conducted in a new 25-bed facility Phoenix, Ariz.

The research unit, which will occupy a floor of the new Indian Health Service Medical Center, will be ready this spring.

The decision to further research these studies was made following last November’s “Working Conference on Etiologic Factors in Cholecystitis and Cholelithiasis” in Scottsdale, Ariz., headed by Dr. Robert S. Gordon, Jr., NIAMD clinical director.

Also attending the conference were: Dr. G. Donald Whedon, NIAMD Director; W. G. Baylis, executive officer; and Drs. Thomas Burch and Peter Bennett of the NIAMD Southwestern Field Studies Section.

Other participants included Dr. E. Siegfried, Director, Phoenix Indian Medical Center, and members of his medical and surgical staffs.

NIAMD research on the Pima Indians of the Gila River Reservation, about 40 miles south of Phoenix, has revealed a prevalence of gallbladder disease six times higher than that found in a similar study of Caucasians conducted in Framingham, Mass.

DR SLAGLE

(Continued from Page 1)

Dr. Slagle has been blind since the age of 14.

He received his B.S. degree, Summa Cum Laude (1955), from St. John’s University. Both his M.S. (1957) and Ph.D. (1961) degrees were received from Massachusetts Institute of Technology.

During his years at that university he was awarded a Staff Associateship from Lincoln Laboratory. Dr. Slagle worked for the Laboratory part time and attended classes part time. He worked there for two additional years after receiving his Ph.D.

From 1965 to 1967 Dr. Slagle was head of the Heuristics Group at the Lawrence Radiation Laboratory in Livermore, Cal., and he taught in the Graduate School at the University of California at Berkeley.

He came to NIH in August 1967.

Dr. Slagle’s scholastic honors include the Recording for the Blind 1959 Scholastic Achievement Award. It was presented to him by President Eisenhower.

He has written numerous scientific articles and will soon have a book published.

Dr. Slagle lives in Bethesda with his wife and five children who range in age from 3 to 9.
Cardiac (Continued from Page 1)

Dr. James G. Townsend, 82, former chief of the Division of Industrial Hygiene at NIH from 1941 to 1951, died on Saturday, Jan. 3, at Bethesda Naval Medical Hospital. He helped direct NIH influenza research studies in 1918.

Dr. Townsend was a U.S. Public Health Service Medical Officer who specialized in the research of pulmonary diseases.

Studied Tuberculosis

Dr. Townsend graduated from Georgetown University Medical School in 1912. His first PHS assignment in 1914 was the study of tuberculosis among the Alaskan natives.

He worked for both the Army and Navy during World War I. He helped set up a health center for Navy personnel and worked on Army sanitation projects.

Later, he surveyed sanitation conditions in Puerto Rico, and also established health and sanitation operations in a number of states.

After his retirement from PHS, Dr. Townsend served in Panama as Medical Director of the Point Four Program.

NEW DRUG (Continued from Page 1)

When rifampicin was then removed, components synthesized in the presence of the antibiotic were incorporated into infectious virus particles.

This was true even when specific inhibitors were added to assure that no further DNA or protein synthesis could take place after the removal of rifampicin.

Electron microscopic pictures of vaccinia-infected cells with and without rifampicin showed that development of virus membranes is interrupted in the presence of the drug.

New Knowledge Gained

After removal of rifampicin, membrane and particle synthesis were seen to proceed in normal fashion.

Until now, little has been known about formation of viral membranes and assembly of virus particles.

Rifampicin promises to be helpful in increasing our knowledge in this important area.

In addition, since virus assembly is a process which has no counterpart in uninfected cells, rifampicin is highly selective—i.e., much more harmful to viruses than to human cells—and may be clinically useful.

The NIH scientists also hope that other derivatives of this drug will be found to prevent assembly of additional classes of viruses.