Dr. Eldon Eagles Named To Newly Created Post. NINDS Deputy Director

Dr. Eldon L. Eagles has been named deputy director of the National Institute of Neurological Diseases and Stroke.

In this new position, Dr. Eagles will share responsibility for the Institute's programs and activities with Dr. Edward F. MacNichol, NINDS Deputy Director.

For the past 6 years Dr. Eagles has served as assistant director of NINDS. Since 1968 he has concurrently served as acting associate director for Collaborative and Field Research for the Institute.

Prior to joining NINDS, Dr. Eagles was associate research professor of Maternal and Child Health and the University of Pittsburgh Graduate School of Public Health.

While at the University, Dr. Eagles serves on various PHS research and training advisory committees.

Dr. Eagles holds an M.D. and a Master of Surgery from Dalhousie University, Halifax, Nova Scotia, a Diploma in Public Health from the University of Toronto, and a Doctorate in Public Health from The Johns Hopkins University.

He practiced general medicine for 3 years in a rural area of Canada and served as a medical health officer in Nova Scotia for 15 years.

He directed a child and maternal health program there from 1954 to 1956.

Experts Can Improve Artificial Devices By Mimicking Complex Nervous System

By Carolyn Holstein

You stumble on a step and "instinctively" grab hold of the rail—without much effort. But imagine doing the same thing with an artificial hand.

Although artificial hands can look fairly normal, they cannot as yet perform very complex tasks or functions because they are not directly controlled by the body's nervous system.

To integrate them with the nervous system requires more understanding of how the system works. This has commanded the attention of experts for years, for the nervous system's complexity, which makes it so wonderful, also makes it one of the most difficult systems to understand and therefore to mimic.

Being able to mimic the system would not only enable scientists to develop better—more responsive—artificial limbs for amputees, but also help them to perfect sensory prostheses for blind and deaf persons, according to Dr. Karl Frank, chief of the NINDS Laboratory of Neural Control.

Such devices, already under development, may eventually help blind persons to navigate in their surroundings or decipher letters and even words.

These devices could work by projecting tactile images onto the skin of blind persons, producing a sensation similar to that felt when someone writes with his finger on your back, or they might work by delivering patterns of electrical stimuli directly to the brain.

Mimicking the system could also enable scientists to extend the capabilities of normally working limbs, by having information recorded from the brain bypass muscles and instead directly activate and control

(See NERVOUS SYSTEM, Page 7)
Blood Bank at CC Initiates New System; No Changes in Benefits to Employees

The Clinical Center Blood Bank is now operating the NIH blood donor program—with its blood credit system—on an independent basis. The new program became effective on Oct. 15.

Under the old system, the Blood Bank had a contract with the American Red Cross, and blood donated at the Clinical Center was credited to the Washington Regional Red Cross Blood Program. Now it is credited to NIH employees.

Nothing changes as far as benefits to employees are concerned. Donors can still give blood at the CC Blood Bank and earn blood coverage for all employees and their families.

Alternate Plan Continues

The alternate free pint which is donated is needed to earn this coverage. Donors continue to be paid for every other pint.

Employees may have four hours administrative leave—at the discretion of the supervisor—at the time of donating. All donations are recorded, on an NIH card now instead of a Red Cross card.

"The new blood credit system is really much more efficient," Dr. Thomas C. Chalmers, CC Director, explained, "since we can respond to all the blood needs of employees directly instead of through a middleman."

Schmidts Donate

One of the last NIH employees to give under the old Red Cross system was Dr. Paul Schmidt, Blood Bank chief; one of the first donors under the new NIH system was his wife.

Both are Rh negative, but Mrs. Schmidt says, "I have given more blood than he has, and mine is better."

Both of them started donating at the age of 16. Dr. Schmidt admits, "This was a few years ago."

He remembers the date of his first visit to a Red Cross Blood Center because it was the day he was accepted by the U.S. Army. He also admits that he is proud of Mrs. Schmidt, who has supplied many O Rh negative pints of blood for NIH patients in emergencies.

The CC Blood Bank has developed many techniques and established itself as a leader in modern blood-banking.

Components Serve Needs

For example, by using blood components (splitting fresh blood into many parts) one pint provides therapy for several patients. Each component serves a specific need for each patient, and no portion is wasted.

Installation of a pioneer computer system has proved to be a step forward also. This Donor File and Recall system has enabled the Blood Bank staff to record and quickly retrieve valuable information about individual donors.

Commercial Sources Eliminated

Elimination of the commercial blood bank source for NIH supplies is another important recent improvement. The result of this action, which was based on research conducted by the Blood Bank staff, has been a greatly decreased incidence of transfusion-related hepatitis in the Clinical Center.

A call to the CC Blood Bank, Ext. 64500, will give:

- More information about the new blood credit system,
- The Red Cross Blood Center schedule for those who wish to keep a personal affiliation with the organization’s program,
- An appointment to deposit blood in the CC Blood Bank.
Progress Report of CFC Shows NIH Has Reached 87.6 Percent of Goal

Three more groups have exceeded their Combined Federal Campaign quotas bringing NIH to 87.6 percent of its goal.

Their percentages are: BHME, 119.5; NLM, 107.5, and the Fogarty International Center, 158.7.

The Oct. 28 progress report shows total NIH contributions of $191,485.81 with 77.1 percent participation.

Two organizations, BHME and NIGMS, have reached their goals with 100 percent or more participation.

“We are deeply grateful to all who have responded so generously thus far in the campaign,” said Dr. Carl G. Baker, Director of NCI and CFO Chairman.

After the official close of the campaign, contributors may send donations directly to the Combined Federal Campaign Headquarters, Nassif Building, Room 3411, 400 7th Street, S.W., Washington, D.C. 20546.

Drs. Hartley, Huebner Share 1970 Kimble Award

Two cancer research scientists from NIH—Dr. Janet W. Hartley and Dr. Robert J. Huebner—shared the 1970 Kimble Methodology Award.

The co-winners were cited for their work in significantly advancing methodology and knowledge in virology and oncology.

Dr. Hartley is in the Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases; Dr. Huebner is chief of the Viral Carcinogenesis Branch, National Cancer Institute.

The Kimble Award, a $1,000 cash prize and engraved plaque, is made annually by the Conference of Public Health Laboratory Directors of the American Public Health Association.

The award, sponsored by Owens-Illinois, Inc. was presented at the annual APHA meeting Oct. 26 in Houston, Tex.

Methods developed by Dr. Hartley have improved studies of human and animal viruses and provided tools for the detection and charac-

Dr. Huebner (l) and Dr. Hartley discuss virus research for which they received the 1970 Kimble Methodology Award.

This latter work has led to new concepts and methodological approaches to the study of human cancer.

Some of Dr. Hartley’s virus test systems now in use include adenoviruses, cytomegaloviruses, mouse polyoma viruses, and mouse hepa-

Dr. Huebner’s work has centered on the detection of antigen associated with tumors produced by viral agents.

With his associates he has demonstrated the occurrence of virus-specific, complement-fixing antigens in tumors induced by the adenoviruses, Rous sarcoma virus, SV-40, and animal leukemia viruses.

One practical application of his findings would permit a search for viral “fingerprints” in human tissues and thus help to answer the question of the causal role and identity of viruses in human cancer.

Dr. Davies Directs Lab Under Rotating System

Dr. David R. Davies has been appointed acting chief of the Laboratory of Molecular Biology, National Institute of Arthritis and Metabolic Diseases.

He will serve for one year, replacing Dr. Gary Felsenfeld, who headed the laboratory from November 1969.

A system of rotating the position of chief of the laboratory is now in its second year. It is believed to be the first such system to be used at NIH.
Researchers Finds That Sudden Deafness May Be Indicator of Systemic Disease

Sudden deafness can be an indicator of various systemic diseases, a researcher at the University of Michigan has found. While other scientists have suspected this, many researchers considered sudden deafness to be a problem of the inner ear or of the temporal bone, the bone at the base and sides of the skull that contains the organs of hearing.

In a study of 40 patients with sudden deafness, the investigator found that 22 had a systemic disorder that could affect hearing.

Dr. Burton F. Jaffe conducted the study over a 5-year period at the University of Michigan Medical Center in Ann Arbor. It was supported in part by the National Institute of Neurological Diseases and Stroke.

The patients included one man with fat emboli, clots which travel through the bloodstream. When these clots reach a very small blood vessel they get stuck and block the vessel.

Eleven of the sudden deafness patients had hypercoagulation, an accelerated rate of blood clotting which can produce a thrombosis or clot somewhere in the blood vessels.

And another 10 patients had upper respiratory infections that could have affected their hearing.

Specialist Alerts Internist

Dr. Jaffe pointed out that his findings are evidence that physicians should begin to think of the ear much as they do the eye—as a sensitive indicator of blood vessel pathology or other systemic disease.

He added that the otorhinolaryngologist, the physician who specializes in ear, nose, and throat problems, can be the key specialist to alert the internist to serious systemic disorders.

When Dr. Jaffe began his study, he kept in mind the previously stated theory that sudden deafness could result from the sudden closing off (occlusion) of a blood vessel.

Dr. Walker Is Appointed Deputy Chief, Baltimore Cancer Research Center

Dr. Michael D. Walker was recently named deputy chief of the National Cancer Institute’s Baltimore Cancer Research Center.

He will also retain his position as head of the Section of Neurological Surgery at the Baltimore facility.

Dr. Jerome B. Block, chief of the BCRC and associate director of the Clinical Center, commended Dr. Walker’s outstanding achievements in the clinical investigation of brain cancer and other malignancies of the central nervous system.

In his new position, Dr. Walker will play a prominent role in the overall management of program efforts.

Serves at Lahey Clinic

A graduate of Yale University and Boston University School of Medicine, he served as a Fellow in Neurosurgery at the Lahey Clinic in Boston.

Before joining NIH in 1965, he was clinical instructor in Neuro-

Yerkes Center Research Described in New Atlas

A recently published book, The Atlas of Comparative Primate Hematology, by Dr. Hans-Jurg Huser, is based on work he did as a visiting scientist during 1966-67 at the Yerkes Regional Primate Research Center in Atlanta, Ga.

The center is supported by the Division of Research Resources.

The reference work compares the blood and bone marrow of non-human primates. It includes material rarely found in conventional references on hematology, such as electron microscopy and histochemistry of leukocytes.

The book is the first on hematology to use computer methods for evaluation of normal values, a method described by Dr. Geoffrey Bourne, Director of the Yerkes Center, as vastly superior to the constant model used thus far.
3 Executives Appointed To Top-Level NCI Posts

Three executive appointments in the National Cancer Institute have been announced: Dr. Frank J. Rauscher, Jr., becomes scientific director for Etiology; Louis M. Carrese, associate director for Program Planning and Analysis, and Calvin B. Baldwin, Jr., executive officer.

Dr. Rauscher, an authority in the field of viral oncolo­gy, was formerly acting scientific di­rector for Eto­logy (see The NIH Record, Nov. 26, 1969).

He is noted for his quantitative studies on host factors in oncogenesis associated with tumor viruses, including a murine leukemia virus which he discovered.

Co-Develops Planning Method

Mr. Carrese joined NCI in 1962. As program planning officer and later deputy associate director for Program, he developed methods for re­search planning, analysis, and co­ordination.

He is co-developer of the Convergence Technique—an innovative planning method uniquely suited to re­search planning—which has been used in the formulation of plans for major cancer research programs and by several medical organiza­tions.

2 Studies Seek to Pinpoint Mechanism By Which Bacteria Destroy Gum Tissue

Two studies to pinpoint the mechanism by which bacteria living in the mouth destroy tooth-supporting tissues in periodontal disease (pyorrhea) are under way at the Forsyth Dental Center in Boston. Periodontal disease is the chief cause of tooth loss in adults.

The National Institute of Dental Research has awarded grants to Dr. James T. Irving and Philip­lias R. Garant for the first year of their studies. The researchers hope to discover the cause of this wide­spread disease so that it can be prevented.

Periodontal disease begins insidi­ously. The gums become red and inflamed and pull away from the teeth. Pockets form near the gum line. Then the gums ulcerate and bleed, pockets deepen, and inflam­mation spreads.

At the same time, the bone under­lying the gums is eaten away or re­sorbed by bone-destroying cells. Because the teeth are normally held firm by this alveolar bone, its de­struction leaves the teeth so wobbly that in time they fall out.

These symptoms—including the severe bone loss—cannot be induced in rats that are raised in a germ-free environment by infecting them with bacteria from human periodon­tal pockets. Otherwise, the germ­free animals show only very slow bone deterioration with age.

Tissues Compared

By comparing tissues in rats reared free of germs throughout their lives with their litter mates infected later with known germs, the researchers hope to pick out the disease-causing organisms and pinpoint the mechanisms by which they destroy the tooth-supporting tissues.

Although formation of a bacterial mat (dental plaque) on teeth around and underneath the gum line is believed a cause of the con­dition, exactly how this mat triggers bone destruction remains a mystery.

According to earlier work by Dr. Irving and others, bone-destroying cells are attracted to bone after its organic framework undergoes cer­tain chemical changes.

Dr. Irving hopes to determine whether bacterial factors are re­sponsible for those bone changes and whether bacteria work havoc on the bone by first causing inflam­mation.

This process is believed to be involved because inflamed tissue is always present near the resorbing alveolar bone.

To determine whether bacteria are essential to bone loss, the scient­ists will compare several types of rat bone after each has been ex­posed to inflammation caused by pure cultures of bacteria from periodontal pockets, or by certain bacterial parts or products, or by such sterile inflammatory agents as turpentine.
Death or Damage From Lead Poisoning Reduced by Early Testing and Treatment

Increased testing for lead poisoning in children has caused a drastic reduction in deaths and brain damage from this environmental hazard over the past 5 years, according to an NIH-supported investigator at the Johns Hopkins University School of Medicine.

Dr. J. Julian Chisolm, a research scientist as well as associate chief of pediatrics at Baltimore, Md., City Hospitals, believes greater awareness of danger and early treatment along with the increased testing bring about the reduced death rate.

Lead poisoning is far from being wiped out though, said Dr. Chisolm, who has just completed a one-year study in the Johns Hopkins clinical research center for children, supported by the Division of Research Resources.

Seeks Early Detection

The study was aimed at finding an easy method of detecting the disease in its early stages. The longer a child goes undiagnosed, he noted, the more likely he is to have brain damage.

Almost half the children who recover from acute lead poisoning have brain damage, which causes convulsions, irritability, and subtle learning defects.

For children who have a recurrence of severe lead poisoning, the rate of brain damage is virtually 100 percent.

Lead poisoning strikes mainly among children who live in dilapidated urban housing and contract the disease by eating lead paint flaking from walls and interior surfaces.

Although the true incidence of this disease is not known, surveys have shown that as many as 5 percent of the children in these so-called "lead belts" may have lead poisoning.

In his study, Dr. Chisolm found that the only completely reliable method of detecting lead poisoning is a blood test. However, this requires a sample from a vein, a difficult procedure in small children.

Refining Procedure

Dr. Chisolm is now trying to refine this procedure, and hopes to reduce the amount necessary to a few drops obtained from pricking a finger.

He believes this "micro test" will furnish an effective method of screening for lead poisoning among high risk populations to detect the disease before any symptoms are present.

At the clinical research center, Dr. Chisolm treats victims with two chelating agents in combination. These agents, known as BAL and EDTA, bind the lead in the blood and pass it out of the body.

This treatment has helped to cut the death rate for severe lead poisoning from 30 percent to less than 5 percent.

Following treatment with BAL and EDTA, which requires hospitalization in the center, the child is treated with another, investigation drug, d-penicillamine. Penicillamine removes the lead from the tissues where it is stored.

Penicillamine treatment is continued for long periods, sometimes years, to remove all the lead.

"If we had good screening and early detection, we could cut the time of penicillamine treatment drastically," Dr. Chisolm said, adding:

"If the child continues to ingest lead, the drugs don't do any good, and he has to be hospitalized and we have to start all over again."

Dr. Warren G. Stamp Appointed To Advisory Council of NIGMS

Dr. Warren G. Stamp has been appointed to the National Advisory General Medical Sciences Council. His term will run through September 1974.

Dr. Stamp is chairman of the Department of Orthopedic Surgery at the University of Virginia Hospital in Charlottesville, Va.

Fed'l Professional Ass'n Goals Noted by Speakers At Information Meeting

"Professional employees need a mechanism for bringing their views and desires to bear on the legislation and regulations that affect their work and environment," Dr. Allen V. Astin told NIH employees who attended the Federal Professional Association information meeting held at Wilson Hall on Oct. 21.

Dr. Astin, former Director of the National Bureau of Standards, was instrumental in starting the large FPA chapter there.

Several past presidents of other FPA chapters spoke, tracing the organization's past history and discussing its present goals.

Improvements Suggested

These include establishment of a separate classification system for professional and executive employees, improvement of their educational opportunities, and more effective use of available administrative authority to vary the duty hours of such employees.

Dr. Edwin D. Becker, NIAMD, who was chairman of the meeting, introduced other FPA notables.

He said that, based on interest shown, the committee would proceed at once toward a meeting for the actual organization of the NIH/NIMH chapter of FPA.

2 Nobel Prize Winners, Drs. Leloir and Borlaug, Have Ties With NIH

Two more Nobel prize winners of 1970 have ties with NIH—Dr. Luis F. Leloir of Argentina, who won the Nobel Prize in Chemistry, and Dr. Norman A. Borlaug, winner of the Nobel Peace Prize.

Dr. Leloir was honored "for his discovery of nucleotides and their role in the biosynthesis of carbohydrates."

His grant from NIH, now in its 18th year, is administered by the National Institute of General Medical Sciences.

Dr. Leloir is one of the world's outstanding biochemists and is recognized for his contributions to the understanding of carbohydrate metabolism, according to Dr. DeWitt Stetten, Director of NIGMS.

With Institute support, Dr. Leloir has demonstrated in great detail the basic biochemical steps required for the enzymatic breakdown of sugars in the body and the synthesis of glycogen and starch.

These discoveries may have important medical applications.

Dr. Leloir is Director of the Instituto de Investigaciones Bioquimicas in Buenos Aires. Currently he is investigating hormonal regulation of sugar metabolism and the enzymes and coenzymes which act on particular sugar particles, the hexosephosphates.

Dr. Borlaug served on the nutrition panels of the U.S. Japan Cooperative Medical Science Program in 1965 and 1966.

This program is now administered by the National Institute of Allergy and Infectious Diseases in collaboration with the National Institute of Arthritis and Metabolic Diseases.

The American agricultural expert developed a dwarf strain of wheat which is helping to supply grains to hungry nations.
Swedish Council Offers 2 Research Fellowships

The Swedish Medical Research Council is sponsoring two postdoctoral research fellowships—to be awarded in 1971 to qualified biomedical scientists who are U.S. citizens.

The fellowships will cover 12 months of research training in basic or clinical sciences in a Government-supported institution in Sweden.

To be eligible, candidates must have done independent research in one of the health sciences for at least 2 of the last 4 years.

Aptitude Must Be Shown

Evidence of research aptitude may be demonstrated in the form of a scientific bibliographic report of scientific publications, and references from persons familiar with the applicant's background.

Applicants must also show that they have been accepted by a Swedish training institution and by a preceptor.

A Facilities Committee Statement must clearly state that the Swedish institution will provide facilities for the duration of the Fellow's stay.

The stipend will amount to $5,500 or $6,000, depending on the scientist's qualifications and experience.

Fellows will also receive an additional $500 per year for each dependent that is dependent goes to Sweden or remains in the United States.

The council will reimburse Fellows for round-trip travel costs for themselves and their immediate families. During their stay they may also accept sabbatical salary, royalties, or other income if reported in the application.

Scientists may obtain application forms and further information from the International Fellowships Section, Fogarty International Center, Swedish Medical Research Council.

Artificial Kidney-Chronic Uremia Proceedings List Promising Innovations

Proceedings of the third annual meeting of Artificial Kidney-Chronic Uremia Program contractors held last January have been published by the National Institute of Arthritis and Metabolic Diseases.

The publication highlights research accomplishments in principal areas of the program including:

Program Areas Listed

Membranes and mass transfer; hardware and instrumentation; blood cannulas and biologically compatible materials, and toxic factors in uremia, dietary management of chronic end-stage renal disease, and clinical studies in uremia.

Innovations included are: development of a new generation of compact artificial kidneys, the so-called "hollow fiber dialyzers," easy-to-use prestereotiled "envelope dialyzers," and a clinically successful method of automated peritoneal dialysis with permanently implanted access devices to the abdominal cavity.

Also, an inexpensive method of manufacturing dialyzers—which up to now have been expensive—through pressure molding in the fashion of phonograph records, and the first successful dialysis of patients with membranes other than cellophane.

The proceedings are being distributed to persons employed in relevant fields. Since they were first issued in 1968, the proceedings have become definitive source material.

 NIH, Bethesda, Md. 20014.

Forms must be completed and returned to the Fogarty Center on or before Feb. 1, 1971.

Final selection will be made at the April 1971 meeting of the Swedish Medical Research Council.

Clinical Center staff members enjoy the annual Appreciation Party given by Nursing Department supervisory personnel. L to r are: Geraldine Ellis, Adam Chornesky, Mildred Claeson, Virginia Murphy, Margaret Wilt, and Rosalie Winkler. This year the Halloween spirit enlivened the occasion—complete with fresh cider, gingerbread, doughnuts, and apples.
Lyman Moore Appointed Executive Officer, NHLI

Appointment of Lyman Moore as executive officer of the National Heart and Lung Institute was recently announced by Dr. Theodore Cooper, Institute Director.

After receiving his B.A. degree from Princeton University in 1936, Mr. Moore served for a year as assistant in Instruction at the University’s Woodrow Wilson School of Public and International Affairs. He served for 2 years as program officer of International House in New York City, then entered the University of Minnesota, where he earned his M.A. in 1940.

That same year Mr. Moore joined the Bureau of the Budget, Subse-

sequently he held numerous administrative posts in HEW.

In addition to his Federal service, Mr. Moore has been a management consultant to a private firm and a professorial lecturer at American University.

His professional affiliations include the Society for the Advancement of Management, of which he was vice president for membership.

Chemotherapists Report On 2 Anticancer Drugs

A conference to advise practicing physicians on research results achieved with the anticancer drugs ortho para-DDD and mithramycin was sponsored by the Chemotherapy Program, National Cancer Institute, Nov. 5-6 in the Jack Masur Auditorium of the Clinical Center.

Both of these anticancer drugs were approved earlier this year as prescription drugs by the Food and Drug Administration.

Ortho para-DDD or mitobane is marketed as “Lysodren” by Calbiochem for use in advanced cancer of the adrenal gland. Mithramycin, useful in some cases of inoperable cancer of the testes, is produced by Chas. Pfizer & Co. under the trade name “Mithracin.”

The opening session, devoted to the antibiotic mithramycin, was chaired by Dr. C. Gordon Zubrod, scientific director for Chemotherapy, NCI. Evaluations of the drug in testicular cancer, in Puget’s disease of the bone, and in problems of calcium imbalance were presented.

Dr. Stephen K. Carter, chief of the Cancer Therapy Evaluation Branch, moderated an afternoon symposium on the therapy of testicular tumors, including treatment with surgery, radiotherapy, and drugs.

A series of reports on the development and use of ortho para-DDD, a drug related to the insecticide DDT, was also presented.

This included a description of the effects of the drug in advanced cancer of the adrenal cortex and in Cushings disease, a rare disease of abnormal growth characteristics (1966-68), vice-president for Intersociety Relations (1968-69), and past president of the Washington chapter.

He is also a fellow of the American Public Health Association and a member of other public and health administration societies.

Dr. Dorfman Receives Award for His Research Supported by NICHD

Dr. Albert Dorfman, NICHD grantee and Director of a center supported by NIH, has received the annual Borden Award.

The award, for outstanding achievement in research relating to nutrition and/or the development of infants and children, consists of $1,000 and a gold medal.

Dr. Dorfman is professor and chairman of the Department of Pediatrics, University of Chicago Pritzker School of Medicine.

He is also Director of the Joseph P. Kennedy, Jr. Mental Retardation Research Center in Chicago. The center was constructed with NIH funds, and is supported by the National Institute of Child Health and Human Development.

Dr. Dorfman has provided a greater understanding of the molecular biology of connective tissue and its causative relationship to a variety of genetic disorders.

TO JOIN THE “DAVIS PLAN” — make a Clinical Center patient’s life happier during the Christmas holidays, and all through the year — please use this form.

Gifts are tax deductible.

Enclosed is a gift of $_____. (Make checks payable to NIH Patient Welfare Fund.)

Send to: Mr. James Davis, director, Office of Administrative Services, Bldg. 31, Room 1C02 — or Mr. John Roatch, chief, Social Work Department, Clinical Center, Room 1N-250.

Donor’s name:____________________

Institute/Division:____________________

Bldg. & Room No.:____________________

Instead of shopping for Christmas cards for colleagues, NIH employees are urged to join the “Davis Plan.” This form was designed to make donating that money to the CC Patient Welfare Fund easier.