New Method Retrieves Latest Data on Epilepsy In Matter of Minutes

For scientists engaged in epilepsy research, keeping up with the scientific literature means keeping track of more than 3,000 possible sources a month—practically impossible for the researcher on his own.

This is no longer necessary, the Epilepsy Abstracts Retrieval System of the National Institute of Neurological Diseases and Stroke is making the information available in minutes.

The EARS system is operated by the Section on Epilepsy, Collaborative and Field Research, headed by Dr. J. Kiffin Penny.

To acquaint NIH users with the system, Dr. Richard Rapport will demonstrate it in the NIH Library the next three Wednesdays (July 14, 21, and 28).

The computer system (Data Center) developed by Mead Data Central Inc., operates via an acoustically coupled remote terminal, op

Monkeys Develop Lymphocytic Leukemia Similar to Type Common in Children

A team of researchers at the New England Regional Primate Research Center, Southboro, Mass., has shown for the first time that owl monkeys can develop a form of leukemia similar to the type most commonly seen in children.

Dr. Luis V. Melendez, head of the team supported by the Division of Research Resources, said the monkeys could provide an animal model for drug treatment of the disease.

Lymphocytic leukemia, the type developed by the monkeys, accounts for 80 percent of all childhood leukemia. An estimated 15,000 men, women, and children in the United States die of leukemia each year.

Reporting in a recent issue of Science, Dr. Melendez and his associates said the extension of the disease's progress over 70 days in these monkeys could give scientists a better opportunity to study the effects of drugs against leukemia.

The leukemia was induced in owl monkeys by injections of Herpesvirus saimiri, a virus found in latent form in squirrel monkeys. Other viruses of the Herpes group cause such diseases as cold sores, fever blisters, and eye infections in humans.

The 12 monkeys in the study received the virus by various routes: injected into and under the skin, into the abdominal cavity, and intravenously.

The purpose of inoculating the monkeys in different ways was to determine if malignant lymphoma could be induced through these various routes of injection.

The team had found in previous studies that intramuscular injections of Herpesvirus saimiri could cause malignant lymphoma.

Six of the 12 monkeys developed leukemia (See LEUKEMIC MONKEYS, Page 8)

Single Civilian Career System Suggested To Replace PHS Commissioned Corps

Phasing out of the Public Health Service Commissioned Corps as well as the post of the PHS Surgeon General was recommended in a recent study, entitled Report of the Secretary's Committee to Study the Public Health Service Commissioned Corps.

The committee made its study at the request of HEW Secretary Elliot L. Richardson.

Dr. Marston Seeks Views On PHS Report Findings

Secretary Richardson, in seeking widespread advice on the important question of the future of the Commissioned Corps, has asked Robert Q. Marston, NIH Director, to comment by July 16 on the Report of the Secretary's Committee to Study the Public Health Service Commissioned Corps.

Dr. Marston, accordingly, would welcome opinions from individuals and groups of NIH employees (both Commissioned Corps and civil service) on the report's recommendations.

Present Corps strength is over 5,000—this includes almost 2,000 professional employees here.

The committee's basic conclusion was that "the system should be replaced by a unified civilian career system for the Public Health Service within the civil service framework."

One committee member strongly prefers the restoration of the Commissioned Corps to its former status as the comprehensive management structure of the PHS. However, he agreed that if this were not possible, the plan outlined in the report represents the most constructive alternative.

It was suggested that, in order to accomplish this, "modifications in the civil service should be obtained to provide features which will attract and retain the quality of health professionals required for the challenging responsibilities of the Nation's principal health organization."

Dr. John A. Perkins, chairman of the Secretary's Committee, is a former HEW Undersecretary. He is now Director of Studies in the Administration of Public Affairs at Northwestern University.

Richard L. Seggel, NIH Associate Director for Administration, (See SINGLE SYSTEM, Page 7)

What can these children be looking at? For the answer see page 3.

Dr. George Blue Spruce Named Special Assistant To Director of BHME

Dr. George Blue Spruce developed a mobile dental clinic for Indian children, and also visited South American countries where he taught dentistry that can be used in primitive areas.

Dr. George Blue Spruce, a dental program administrator in the Division of Dental Health, and the Nation's only full-blooded Indian dentist, has been named a special assistant to Dr. Kenneth M. Endicott, BHME Director.

Dr. Blue Spruce will head a new effort to improve the health of Indians and will also recruit Indians into the health professions.

He will carry out his new assignment in cooperation with the Indian Health Service, which provides care for more than 500,000 Indians living on Federal reservations.

According to HEW Secretary Elliot L. Richardson, the program is a step in carrying out the President's pledge in his Message on Indian Affairs to "expand our efforts to train Indians for health careers."

"With increasing national attention being given to minorities, this is the time for a major effort to help the First Americans," Secretary Richardson said.

"We want to improve the quality of their lives by getting more Indians into all the health professions, particularly into medicine, (See DR. BLUE SPRUCE, Page 1)
 Revolutionary Printing Suggestion Merits Cash Award, Citation for 'Ken' Miller

By Irene Golub
Summer Information Aide

An idea introduced by "Ken" Miller, printing specialist, will result in savings of time, editing, typesetting and printing cost for manuscripts by NIH scientists. By using this concept, the cost and time required to produce a publication can be cut in half, if not more, a saving upon manuscript length.

In recognition of his suggestion, Mr. Miller received a citation and $500 award.

He had combined the Wylbur, a machine which functions as a text editor and remote job-entry facility, to serve as an input mechanism for another machine—the Linotron, a device which produces a camera copy positive or a negative of a type set page.

In other words, the Linotron can reproduce a page of copy directly from magnetic tapes typewritten on Wylbur.

Mr. Miller first formulated his idea to combine these devices after he had attended an exhibit on the Keymatic Data Systems.

Subsequently, he took a computer course at Montgomery College in Rockville and a special course on the Linotron photocomposer at the U.S. Department of Agriculture Graduate School.

Utilizing the Wylbur as an input device for the photocomposer, the console operator can correct typing mistakes immediately by means of over-typing.

This system enables the author or editor to review the manuscript and mark typing errors and revisions. Selective corrections can be made without retyping the entire manuscript page.

At the same time the manuscript is typed onto the console, it is also stored in the system on discs. The operator can direct the material to be rewritten on the magnetic tapes. By adding a very limited number of function codes, the tape can be used as input for the Linotron.

Because the photocomposer sets characters of varying point sizes and face types at amazing speeds, the system is much less time consuming and expensive than the hot- or cold-type setting methods.

For example, a publication of 256 pages would require 17 weeks and cost about $2,560 using the hot-type method. With the Wylbur-Linotron setup, however, only 3 weeks would be necessary at an expense of approximately $1,018.

Saves Space, Paper
Another plus is its space saving and, hence, paper saving feature. Covers, title pages and other irregular materials would not be readily adaptable to the photocomposer, however, Mr. Miller has already begun to eliminate this difficulty. A method has been devised whereby the machine can allow for a one-column, non-mandatory picture (inserted within the text as soon as possible and appropriate).

For information on the system, call Mr. Miller, Printing and Reproduction Branch, General Services Management, Ext. 66077.

Leonard Rice, NINDS, Anne Tisiker; NLM, Peter Monk.

Hannon; NIEHS, Elizabeth Y. James; NIGMS, Wanda Warddell; NIMH, Daniel Rice; NINDS, Anne Tisiker; NLM, Peter Monk.

Sgt. Jessie W. James, a veteran guard, died suddenly on June 25. He was on duty the night before.

During World War II, he served in the Infantry and was awarded the Bronze Star, Purple Heart, the buildings on the reservation.

Sgt. Jessie W. James, electrical maintenance man, talks with Manly Miller (I), head, Biological Engineering Shop, and Dr. Robert N. Philip, assistant director, RML.

George "Les" Wheeler retired on June 11 from the NIAID's Rocky Mountain Laboratory after 30 years of Federal service to the day.

"Les" spent all of his service in RML with the exception of 16 months with the U.S. Air Force from February 1946 to June 1946. He plans to continue living in Hamilton, Mont., where he has several self-employment projects scheduled.

Dr. John Greene Given Citation Of Merit by Boston University

Dr. John C. Greene, Director of the Division of Dental Health, BHME, has been awarded a Citation of Merit from Boston University in recognition of his "distinguished service in dental administration and investigation."

NIH Television, Radio Program Schedule

Radio

DISCUSSION: NIH

WGMS, AM-570—FM Stereo 103.5—Friday, about 9:15 p.m.

July 9

Dr. Thomas C. Chalmera
Director, Clinical Center
Subject: Recent Advances in Hepatitis Knowledge (R)

July 16

Dr. Christian J. Posner, NHLI
Subject: Clinical Problems of Drug Interactions (R)

Interviews take place during intermission of the Library of Congress concerts.

CC Patient Activity Section Will Sponsor 3 Concerts

NIH employees are invited to join patients at summer band concerts sponsored by the CC Patient Activity Section.

Performances, which begin at 7:30 p.m., will feature the U.S. Navy Band on July 23, the U.S. Marine Band on August 5, and the U.S. Navy Sea Chanters on August 17.

Concerts will be given on the patio east of the Jack Masur Auditorium.

The NIH Record reserves the right to make corrections, changes or deletions in submitted copy in conformity with the policies of the paper and the Department of Health, Education, and Welfare.
Gwendolyn Boklund Tells Advantage of Retiring At Gift-Giving Lunch

Gwendolyn Boklund has acted as "buffer"—the official term is secretary—for over 14 years to the chief of Clinical Care, NIMH Intramural Research Program. Over the years the chief has changed, but Mrs. Boklund was there ready to assist a new head. She now has retired from that post, and a luncheon and gifts given by friends and fellow co-workers marked the occasion. However, Mrs. Boklund plans to come back and work in the office on a part-time basis.

Dr. Harold Greenberg, chief of Clinical Care, expressed his appreciation and the feelings of the entire staff for "Gwen's help in softening the collisions with administrative walls," and that she was returning part-time.

Mrs. Boklund is thoroughly enjoying her freedom. She pointed out one great advantage—she doesn't have to worry about covering the office phone during lunch.

Mrs. Boklund looks back over her years at NIMH, remembering the interesting scientists that she has worked with. And among the most interesting was Dr. Lyman Wynne in the Adult Psychiatry Branch—she was in that branch before entering the Clinical Care Office.

She considers her duties at NIMH the most rewarding of her 27 years of Government service. Opportunities for other jobs in other places developed, but she always turned them down. She preferred working for scientists who worked with patients.

The young doctors in the Clinical Associates Program also have reason to praise Mrs. Boklund—they often came to her and asked for assistance with administrative problems.

And the nice thing about asking questions of Mrs. Boklund is that she always has the right answers.

Dr. G. Donald Whedon Receives Alumni Award

The 1971 University of Rochester Citation to Alumni was awarded to Dr. G. Donald Whedon, Director of the National Institute of Arthritis and Metabolic Diseases. The award, highest honor given by the university to alumni, was presented to Dr. Whedon at its 121st annual commencement ceremonies in June.

Dr. Whedon was cited for his directorship of NIAMD, his work on disorders of calcium metabolism, and for his studies of the role of nutritional factors such as dietary calcium in osteoporosis.

In addition, he was cited for his work as the principal investigator on the first and only metabolic study in space. This study was carried out on Gemini 7 in 1965.

Dr. Whedon was appointed NIAMD Director in November 1962 after having served as assistant director since 1956.

He first came to NIH in 1952 as chief of the Institute's Metabolic Diseases Branch and served as a clinical investigator until 1965.

In Computer Parlance Properly-Phrased Questions Will Receive Logical Answers

Someone recently wrote on a blackboard in Bldg. 12-A: "God watches those who watch computers and He worries." And the reason for the switch in quote is that in using computers the ability to ask questions properly is a fundamental requirement.

The Division of Research Grants has an information system which is an invaluable guide to asking the right question at the right time. The system is called IMPAC, an acronym for Information for Management Planning, Analysis, and Coordination.

Human Errors at Fault

IMPAC stores (input), retrieves (output), and analyzes information relating to extramural programs at NIH.

"Input" is facts or data that is stored, or put into, a computer by tapes, records electronic impulse, or other methods.

"Output" is the retrieval part of the operation. It is the material that is taken out—retrieved—in answer to the question.

An IMPAC expert offers sage advice: Be specific. It's the human's fault, not the computer's if a wrong answer is arrived at.

A computer may very well come up with several correct answers on this question: What is NIH supporting in medical research? The Now, that quote would be less funny, but a great deal more accurate, had it read "God watches those who question computers and He worries."

Does the questioner want training grants or fellowships included? Should construction grants be included?

The logic of the answers depends on how specifically the questions are phrased, hence the importance of the questioner.

It is up to the analyst to sift the data, decide the importance of the (See COMPUTER PARLANCE, Page 4)
Computer Parlance (Continued from Page 3)

Carol Nacy, Laboratory of Infectious Diseases, NINDS, places virus material into a drawer of the 17' x 9' x 8' freezer which is kept at 34 degrees Fahrenheit. The drawers are maintained at minus 112 degrees F. The freezer—the only one of its kind in this country—stores virus in a live state. It is located in the newly opened lab in Bldg. 36.

Dr. David F. Johnson Appointed Section Chief

Dr. David F. Johnson has been appointed chief of the Section on Microanalytical Services and Instrumentation, Laboratory of Chemistry, National Institute of Arthritis and Metabolic Diseases.

Currently, Dr. Johnson is president of the NIH Credit Union, a member of the board of trustees at Prince George's Community College, and a lay reader at the Calvary Protestant Episcopal Church in Washington. He also serves as an Equal Employment Opportunity hearing officer for all of HEW.

Dr. Johnson received his B.S. degree from Allegheny College, his M.S. from Howard University, and his Ph.D. from Georgetown University. Since 1953, he has been a research chemist with NIAMD and has published almost 30 scientific papers. His particular areas of interest include steroid metabolism, toxic facts and then present the answer to the scientists who have requested the information.

A programmer, the person who feeds questions into a computer, can ask a question as pinpointed as: How much money for NIH research project grants in FY 1970 was awarded for urology research in surgery departments of N.Y. medical schools, and how does this compare with other NIH research grants to the same departments?

The computer has the answers on tape, just waiting to be deciphered by the analyzer.

In computer parlance, there is a query titled "non-recurring." It is an out-of-the-ordinary, or one shot question.

Take this example: The Congressman from "anywhere" calls DBG and asks how many grants is NIH supporting in a given area in a specific county in his state.

Sol Eskenazi, chief of the Statistics and Analysis Branch which maintains and operates IMPAC, explained that the system processes 300 non-recurring queries a month.

The master file on extramural programs in DBG's computer system contains data on all grants, awards, and contracts supported by NIH. Each record has about 100 items of data.

One item will have the principal investigator's name, another item, the title of his project.

Other IMPAC files include data on grantee institutions, and biographical and academic information on trainees and awardees.

IMPAC answers thousands of queries a year for NIH Institutes and Divisions, other Government agencies, Congress, and the general public.

The IMPAC system is also the source for many DBG publications, including the "Blue Books"—the 4-volume annual on PHS grants and awards.

studies in young plants and frogs, and column chromatography of adrenocortical steroids and ketosteroids.

Dr. Johnson adjusts equipment with technician, Nancy S. Lamontagne.

Latest Participants in NIH Visiting Scientists Program Listed Here

5/13—Dr. Emilio Carbone, Italy, Laboratory of Neurobiology. Sponsor: Dr. Ichiji Tatsaki, NIMH, Bldg. 36, Rm. 1D02.
5/16—Dr. Hinrich Cramer, Germany, Laboratory of Clinical Science. Sponsor: Dr. Irwin J. Kopin, NIMH, Bldg. 10, Rm. 2D46.
6/1—Dr. Thor Alvegard, Norway, Human Tumor Cell Biology Branch. Sponsor: Dr. Robert C. Graw, NCI, Bldg. 10, Rm. 2B51.
6/1—Dr. Gunter Niemeyer, Germany, Laboratory of Vision Research. Sponsor: Dr. Peter Gouras, NEI, Bldg. 10, Rm. 1D19.
6/8—Dr. Tokuro Oh-ishi, Japan, Section on Medicinal Chemistry. Sponsor: Dr. Everett L. May, NIAMD, Bldg. 10, Rm. 355.
6/22—Dr. Ilse-Hanny Tretner, Germany, Department of Nuclear Medicine. Sponsor: Dr. Steven M. Larson, CC, Bldg. 10, Rm. 1B51A.

Dr. Blue Spruce (Continued from Page 1)

Dr. Blue Spruce, a Pueblo Indian from Santa Fe, will work with Indian groups, students, health organizations, educational institutions, and officials of other Federal, state, and local agencies.

Served with DDH

Before his present appointment, Dr. Blue Spruce was chief of the Auxiliary Utilization Section, Education Development Branch, DDH.

He received his D.D.S. degree from Creighton University, and an M.P.H. degree from the California School of Public Health.

Dr. Blue Spruce served for 2 years as a dentist in the Navy, and then entered private practice for a brief period. He joined the PHS in 1968. For the next 5 years he was with the Indian Health Service at Taos, and at Fort Belknap.

Later, he was named deputy chief at the PHS Outpatient Clinic in New York. From 1963-66 he was chief dental officer at the U.S. Merchant Marine Academy.

In 1967-68, as a dental public health resident at the Dental Health Center, San Francisco, he developed a mobile dental clinic for Indian children in Nevada.

Dr. Blue Spruce also served as a consultant for the Pan American Health Organization. He visited most of the countries in South America, and taught methods of dentistry that can be used in primitive areas.

His organizations include the Congress of American Indians, the National Indian Education Association, The American Dental Association, and the American Association of Dental Schools.

Dr. Blue Spruce who was captain of his college tennis team, is also a member of the U.S. and the Mid-Atlantic Lawn Tennis Associations.

His brother, Dr. Beryl Blue Spruce, teaches at the University of Michigan School of Public Health.

Ten Approachesoutlined By Dr. Eugene Confrey For Manpower Needs

Ten new or stepped-up approaches which the Bureau of Health Manpower Education will employ to tackle health manpower shortages in the seventies were outlined by Dr. Eugene A. Confrey, keynote speaker at a recent health manpower conference.

Dr. Confrey, associate director for Program Planning and Evaluation, BHME, spoke at the Health Manpower Planning and Development Conference of six states held in Oklahoma City June 20-22.

The approaches are among several proposals contained in recent legislation before Congress and in policies developing in the Bureau.

"All of these ideas will shape the character of health manpower educational planning in this decade, irrespective of details of pending legislation," Dr. Confrey said.

The approaches include accelerating the output of medical personnel by educational institutions, revising the medical curriculum, training more medical people in primary care, using more medical assistants, and training medical personnel in a team approach to delivering health care.

Programs will extend training opportunities in health professions to students who cannot afford such training, Dr. Confrey said.

New Forms Proposed

New institutional forms have been recommended, such as health education centers in areas which do not have medical training facilities and lack medical manpower.

Efforts are under way to determine why many medical institutions are in financial trouble.

Dr. Confrey said that systems analysis will be used in planning for the Nation's health needs.

The conference was sponsored by the BHME and HEW Regional Offices in conjunction with the University of Oklahoma Medical Center.
EPILEPSY DATA (Continued from Page 1)

Over 3,500 People in D.C.-Baltimore Program Tested for Tay-Sachs Disease

By Robert White

More than 3,500 persons in the Washington-Baltimore area have been screened during the first 6 weeks of an unprecedented community involvement program designed to detect Tay-Sachs disease—an inherited disorder of children which causes destruction of the central nervous system and death by age four.

Five thousand people will be screened before Labor Day and 60,000 are expected to be tested before the formal phase of the program is concluded in 1973.

First of its kind in the U.S., the Tay-Sachs Program is directed by Dr. Michael M. Kaback, a former NINDS researcher, now with the John F. Kennedy Institute in Baltimore.

Background Noted

Dr. Kaback also is assistant professor of Pediatrics at the Johns Hopkins University School of Medicine and a Joseph P. Kennedy Jr. Memorial Foundation Junior Research Scholar in mental retardation.

Fifteen physicians—clinical and research associates from NIH, organized by Dr. Robert S. Zeiger, NCI—and eight hospital corpsmen from the National Naval Medical Center in Bethesda, are among volunteers assisting at the opening clinics.

Dr. Kaback, who conceived the idea and helped move the Jewish communities toward voluntary involvement, describes the program as financially practical and technically feasible, an important pilot program for preventive genetic medicine.

He cites the program as a prototype for the prevention of genetic diseases, adding that it may later be applied to other genetic diseases such as sickle cell anemia and cystic fibrosis.

Critical biochemical studies dealing with lipid and biochemical ab-

The Tay-Sachs disease voluntary screening program was made possible through the efforts of several scientists, including Drs. John S. O'Brien (I) and Shintaro Okada of the University of California (San Diego). Drs. O'Brien and Okada, who delineated the specific enzyme deficiency in Tay-Sachs disease, have been working in the NINDS Laboratory of Neurochemistry.

They discovered that the enzyme hexosaminidase-A was totally deficient in the brain and other tissues from children with Tay-Sachs disease.

(See TAY-SACHS, Page 6)

Rapid, Simple Technique To Purify Enzyme TAT Aids Synthesis Study

In order to study an enzyme—of which the synthesis is increased by the administration of steroid hormones—researchers at the National Cancer Institute have employed a rapid and simple new technique for its purification.

Drs. James V. Miller, Jr., and E. Brad Thompson, Laboratory of Biochemistry, recently reported this technique at the annual meeting of the American Society of Biological Chemists in San Francisco.

Dr. Miller explained that scientists are interested in this enzyme—the protein tyrosine aminotransferase (TAT)—normally occurring in all humans, because it serves as a model for the study of steroid hormone effects on protein synthesis.

Researchers have been investigating these effects for many years. Purification of the enzyme is an essential step in creating an antibody which will be an aid to the synthesis study.

TAT metabolizes tyrosine, an amino acid that is an essential component of body tissues.

To purify TAT, Drs. Miller and Thompson have used affinity chromatography, a relatively new and powerful method for purifying proteins.

Separates Solution Components

Chromatography is a technique used in separating the various protein components of a solution from one another by such characteristics as size or electrical charge.

This is done by making a column of absorbing material and passing the solution through it. The proteins then emerge from the column in bands containing proteins of similar size or charge.

In affinity chromatography, a specific molecule to which a particular component of a solution will bind is linked to a gel and a column is made of this material.

When a solution containing a protein, for instance, is passed through such a column, the protein is removed from the solution by binding to the molecule.

The protein is then stripped from the column significantly purified.

The molecule to which TAT binds, for instance, is passed through a column prepared from a gel to which this molecule is linked and removed by selecting the right antiserum.

The enzyme can subsequently be removed from the column, purified more than 100 fold, that is, obtained in a form more than 100 times more concentrated than the original substance.

Dr. Allen Nimetz, one of the 15 NIH physicians who assisted at the opening clinics, draws a blood sample at a recent Tay-Sachs screening in Rockville.

Dr. Rapport explains the EARIS system to scientists at a recent American Neurological Association meeting. He will demonstrate the system again at the NIH Library July 14, 21, and 28.

Dr. Stanley Dies, Served On Nat'l Cancer Council

Dr. Wendell M. Stanley, a 1946 Nobel Prize winner, who served a term on the National Advisory Council, died of an apparent heart attack on June 15.

Fifteen years ago, the laureate urged intensification of research on viruses as likely etiologic agents in human cancer.

Last March, Dr. Stanley, with other noted scientists, was consulted by Dr. Carl G. Baker, NCI Director, on plans for expanding the Institute's programs.

Over 3,500 People in D.C.-Baltimore Program Tested for Tay-Sachs Disease

By Robert White

More than 3,500 persons in the Washington-Baltimore area have been screened during the first 6 weeks of an unprecedented community involvement program designed to detect Tay-Sachs disease—an inherited disorder of children which causes destruction of the central nervous system and death by age four.

Five thousand people will be screened before Labor Day and 60,000 are expected to be tested before the formal phase of the program is concluded in 1973.

First of its kind in the U.S., the Tay-Sachs Program is directed by Dr. Michael M. Kaback, a former NINDS researcher, now with the John F. Kennedy Institute in Baltimore.

Background Noted

Dr. Kaback also is assistant professor of Pediatrics at the Johns Hopkins University School of Medicine and a Joseph P. Kennedy Jr. Memorial Foundation Junior Research Scholar in mental retardation.

Fifteen physicians—clinical and research associates from NIH, organized by Dr. Robert S. Zeiger, NCI—and eight hospital corpsmen from the National Naval Medical Center in Bethesda, are among volunteers assisting at the opening clinics.

Dr. Kaback, who conceived the idea and helped move the Jewish communities toward voluntary involvement, describes the program as financially practical and technically feasible, an important pilot program for preventive genetic medicine.

He cites the program as a prototype for the prevention of genetic diseases, adding that it may later be applied to other genetic diseases such as sickle cell anemia and cystic fibrosis.

Critical biochemical studies dealing with lipid and biochemical ab-

The Tay-Sachs disease voluntary screening program was made possible through the efforts of several scientists, including Drs. John S. O'Brien (I) and Shintaro Okada of the University of California (San Diego). Drs. O'Brien and Okada, who delineated the specific enzyme deficiency in Tay-Sachs disease, have been working in the NINDS Laboratory of Neurochemistry.

They discovered that the enzyme hexosaminidase-A was totally deficient in the brain and other tissues from children with Tay-Sachs disease.

(See TAY-SACHS, Page 6)

Rapid, Simple Technique To Purify Enzyme TAT Aids Synthesis Study

In order to study an enzyme—of which the synthesis is increased by the administration of steroid hormones—researchers at the National Cancer Institute have employed a rapid and simple new technique for its purification.

Drs. James V. Miller, Jr., and E. Brad Thompson, Laboratory of Biochemistry, recently reported this technique at the annual meeting of the American Society of Biological Chemists in San Francisco.

Dr. Miller explained that scientists are interested in this enzyme—the protein tyrosine aminotransferase (TAT)—normally occurring in all humans, because it serves as a model for the study of steroid hormone effects on protein synthesis.

Researchers have been investigating these effects for many years. Purification of the enzyme is an essential step in creating an antibody which will be an aid to the synthesis study.

TAT metabolizes tyrosine, an amino acid that is an essential component of body tissues.

To purify TAT, Drs. Miller and Thompson have used affinity chromatography, a relatively new and powerful method for purifying proteins.

Separates Solution Components

Chromatography is a technique used in separating the various protein components of a solution from one another by such characteristics as size or electrical charge.

This is done by making a column of absorbing material and passing the solution through it. The proteins then emerge from the column in bands containing proteins of similar size or charge.

In affinity chromatography, a specific molecule to which a particular component of a solution will bind is linked to a gel and a column is made of this material.

When a solution containing a protein, for instance, is passed through such a column, the protein is removed from the solution by binding to the molecule.

The protein is then stripped from the column significantly purified.

The molecule to which TAT binds, for instance, is passed through a column prepared from a gel to which this molecule is linked and removed by selecting the right antiserum.

The enzyme can subsequently be removed from the column, purified more than 100 fold, that is, obtained in a form more than 100 times more concentrated than the original substance.
TAY-SACHS

(Continued from Page 5)

In addition, Drs. O'Brien and Okada were able to establish that carriers for the Tay-Sachs gene could be detected by a simple serum test for this enzyme.

Just last month, Drs. O'Brien and Okada—with support from the National Institute of General Medical Sciences and NIH—demonstrated the accuracy and usefulness of genetic disease control measures in a study involving 15 pregnant women who previously had given birth to children with Tay-Sachs disease.

In their diagnostic study, the scientists received fetal cells drawn during the 16th to 18th weeks of pregnancy from the amniotic fluid of each of the 15 women known to be of high risk.

In nine cases, the enzyme was detected in time and the investigators were able to assure parents of fetuses free from disease.

In the other six cases, the enzyme was totally absent and the prospective parents were counseled as to the virtual certainty of having a Tay-Sachs child. The parents in five of these cases chose to terminate the mothers' pregnancies.

The diagnosis of Tay-Sachs disease was confirmed in the five aborted fetuses and in the child who was born—and who subsequently developed the disease.

In essence, the voluntary screening program employs a three-pronged attack on Tay-Sachs disease.

The first is carrier detection followed quickly by intrauterine diagnosis where needed, and, where further necessary, by genetic counseling of potential carriers of the Tay-Sachs trait.

The mass screening of high risk populations is the first step in the procedure since this screening pinpoints those who are carriers.

Tay-Sachs disease is concentrated almost exclusively in American Jews of Eastern European ancestry. Jewish persons of this ancestry comprise more than 90 percent of all American Jews.

In the Jewish population, one of 30 persons is estimated to carry the Tay-Sachs gene.

Because Tay-Sachs disease is a genetically-recessive disorder, both parents must be carriers for the Tay-Sachs gene to be a risk for producing a child with the disease.

One in every 900 Jewish couples undergo a risk of having a child with Tay-Sachs disease.

Where both parents are carriers, there is statistically a one-in-four chance with each pregnancy of producing a child with Tay-Sachs disease.

The community involvement program began with the mailing of letters and brochures to physicians and with the briefing of Rabbis in the two areas.

Thus far, more than 500 volunteers have assisted in mass screening programs at Beth-El Synagogue in Bethesda, the Baltimore Hebrew Congregation, the Jewish Social Service Agency in Rockville, and Ohel Shalom and Beth-El Synagogues, both in Baltimore.

Additional summer clinics will be held at the Baltimore Jewish Community Center, July 27 and August 24.

Activities will resume in the fall with another mass screening drive in Montgomery County. Included in the 1971-72 plans is a mass screening of NIH employees.

Key groups in organizing the program are the Kennedy Institute in Baltimore and the National Capital Tay-Sachs Foundation and the Service Guild in Washington.

All funds for operating the clinics come voluntarily from concerned individuals and organizations.

NIAID's Rocky Mountain Laboratory at Hamilton, Mont., was host at a recent 2-day meeting for NIH Directors. The group met the RML staff and toured the labs. Guests showed special interest in RML's cancer and slow virus studies.

Dr. Herbert G. Steiner, RML Director (l), conducts a tour for Dr. Robert W. Berliner, Deputy Director for Science, NIH (c), and Dr. John R. Sool, Scientific Director, NIAID.

Exhibit Displays Therapy Of Original Art Work By Depressed Patients

An exhibit demonstrating effectiveness of diagnosis and treatment through art therapy on patients suffering from extreme depression won third place among exhibits at a recent APA meeting.

A brochure of brief case histories accompanied the exhibit, which pointed out clues to suicidal thinking in the original art work of patients.

The American Psychological Association meeting was held in Washington last month.

The exhibit displayed how Harold Wadeson, Section on Psychiatry in the NIMH Laboratory of Clinical Sciences, employed therapy.

Design and production were a joint effort of the Laboratory and the Audiovisual and Telecommunications Branch of the NIMH Office of Communications.

Frank Carey Awarded AMA's Highest Honor For Medical Series

The American Medical Association recently awarded Frank Carey their highest honor for "Man's Common Ills," a 5-part series on interviews with NIH researchers and grantees.

The Washington-based Associated Press science writer received the Medical Journalism Award for Newspapers at the annual meeting of the National Association of Science Writers in Atlantic City.

The five articles discussed the common cold, insomnia, backache, dental trouble, and indigestion.

Cooperating grantee institutions were Brown University, The University of California at Los Angeles, Baylor University, The California State Department of Health, New York University, and George-town University.

The award recognizes "journal- ism that contributes to a better understanding of medicine and health in the United States."
Research Program on Inherited Diseases Expanded Through New Research Grants

The research program on the nature and causes of genetic diseases which affect some 15 million Americans is being expanded by the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK).

Dr. Robert S. Gordon, director of the Institute, recently announced that 26 new genetics research grants totaling $1,024,710 will be directed toward the understanding of factors that control genetic disease, the fundamental units of heredity.

The new grants were awarded to 12 research centers in eight states, including the University of California, San Francisco, and the University of Washington, Seattle.

The grants will be used to study the genetic basis of disease in families and populations, and to identify genetic markers that can be used to detect genetic diseases early in life.

The research program is one of the largest in the world, and its goals are to develop new treatments for genetic diseases, to identify new genetic causes of disease, and to develop new methods for detecting genetic diseases early in life.

NICHD Scientists Meet, Discuss Latest Studies

In a daylong meeting held at NIH recently, scientists from the Intramural Research Program of the NICHD presented papers describing their latest findings on topics ranging from hearing systems in monkeys to pulmonary emphysema in humans.

Dr. Charles U. Low, scientific director of the National Institute of Child Health and Human Development, opened the meeting with a discussion of future expansion plans for the Institute's intramural research.

Investigators from the NICHD Gerontology Research Center in Baltimore and the Institute's laboratories on the reservation participated in the Annual Spring Research Day Program.

SINGLE SYSTEM

(Continued from Page 1)

was staff director for the study.

The report specifically recommends that HEW propose legislation in the next session of Congress, to be effective July 1, 1973, to establish a single personnel system for the Department's health programs.

In its brief history of the Corps, the committee cites the Corps' accomplishments, but points out that the character of the Corps has changed dramatically in recent years and has become heavily dependent on the military draft.

The report states that "suggestions concerning a specific program mission for the Corps would leave out a significant number of officers now in the Corps, such as those at the National Institutes of Health."

Further, the committee notes that such a suggestion could not be reconciled with the currently established organization of HEW's health programs.

In addition to its conclusions and recommendations, the committee devoted chapters to needs and problems ahead and to the alternatives, and summarized other recent studies and related actions concerning the PHS Commissioned Corps.

System of Instant Data on Psychotropic Drugs Explained at Meeting

A comprehensive computer-centered system for instant data input and retrieval on new and useful drugs which affect the mind was demonstrated at a recent meeting in Yugoslavia by the Division of Computer Research and Technology.

At the request of the National Institute of Mental Health, the demonstration took place in Plitvice during the first meeting, June 21-25, of the International Reference Center for Information on Psychotropic Drugs.

This organization, operated and developed for the World Health Organization by the NIMH, now has 20 cooperating centers throughout the world that serve as an information network.

Dr. Leeds Presides

Dr. Alice Leeds, NIMH, is chief of the Center. She opened the meetings' scientific sessions and presided at an evaluation and planning discussion at their conclusion.

Dr. Jerome Levine, chief of the NIMH Psychopharmacology Research Branch, reported on a "Research Plan for An Information System for Clinical Psychotropic Drug Studies," and participated in other presentations.

On the last day of the meeting, Dr. Stephen R. Heller and Richard J. Feldmann, both in DCRT, discussed recent contributions of computer technology and its potential for advancing the effectiveness of psychotropic Drug Information Network.

Dr. Stetten explained that the noise was accompanied by howling and violent gestures. Sacred masks were used by the Iroquois Nation's "False Face Healing Society." They were intended to represent goblins or spirits able to expel diseases.

Drums and rattles were used to drive the demon out of the patients. The noise was accompanied by howling and violent gestures. Sacred masks were used by the Iroquois Nation's "False Face Healing Society." They were intended to represent goblins or spirits able to expel diseases.

Rattles used by American Indians during ceremonies include the Tinuit (Alaska) rattle (top), Iroquois turtle shell rattle (center), and an Iroquois buffalo horn rattle (bottom).
Dr. Novokhatsky of Soviet Eye Institute Discusses the Three Phases of Research

Dr. Novokhatsky is a scientist from the Soviet Union who visited NIH recently. His research has been the subject of controversy, as he believes that centrifugal and encephalo-retinal nerve fibers exist in mammals.

According to Dr. Alexander Novokhatsky, there is evidence for these fibers. However, controversy exists in the scientific community about their existence.

In addition to his investigations of centrifugal and encephalo-retinal fibers, Dr. Novokhatsky has been involved in research on diseases of the retina and optic nerve.

Just before his lecture on his interesting—and controversial—research, Dr. Novokhatsky met with the executive director of Stone House, Dr. Carl Kupfer.

Dr. Novokhatsky has devoted the past 20 years to clinical research in diseases of the retina and optic nerve. In addition to his investigations of centrifugal and encephalo-retinal fibers, he has been interested in the differential diagnosis of hereditary tapetoretinal degenerations and the classification of inflammatory diseases and atrophy in the optic tract.

An invitation to visit the United States was given to Dr. Novokhatsky by Sylvia N. Rachlin, executive vice president and founder of the Myopia International Research Foundation, a U.S. voluntary health agency.

Dr. Novokhatsky of Soviet Eye Institute Discusses the Three Phases of Research

Just before his lecture on his interesting—and controversial—theoriestheories, Dr. Novokhatsky met with Dr. Carl Kupfer, NEI Director, and Dr. Milo D. Leavitt, Jr., FIC Director.

According to Dr. Alexander Novokhatsky, a scientist from the Soviet Union who visited NIH recently, every important scientific discovery passes through three stages of acceptance.

"In the first stage, everyone says, 'That is crazy, idiotic.' In the second phase, they say, 'Maybe there is something to it after all.' And, finally, in a few years everyone shrugs and says, 'So what? We've known that all the time.'"

Dr. Novokhatsky smiled as he explained that he hoped his research would soon pass into the third phase, referring to his controversial theories on the existence of "centrifugal and encephalo-retinal nerve fibers in mammals."

The existence of such fibers would mean that there is a feedback system from the brain to the retina. Whether it exists is a subject of debate among neurophysiologists, neuroanatomists, and neuroophthalmologists.

Dr. Novokhatsky, who is chief of the Diagnostic Laboratory of the Filatov Research Institute of Eye Diseases and Tissue Therapy in Odessa, the largest ophthalmological institution in the Soviet Union, discussed his research at a seminar in Stone House.

The meeting was sponsored by the National Eye Institute in cooperation with the Fogarty International Center.

Dr. Novokhatsky has devoted the past 20 years to clinical research in diseases of the retina and optic nerve.

In addition to his investigations of centrifugal and encephalo-retinal fibers, he has been interested in the differential diagnosis of hereditary tapetoretinal degenerations and the classification of inflammatory diseases and atrophy in the optic tract.

An invitation to visit the United States was given to Dr. Novokhatsky by Sylvia N. Rachlin, executive vice president and founder of the Myopia International Research Foundation, a U.S. voluntary health agency.

Dr. Novokhatsky smiled as he explained that he hoped his research would soon pass into the third phase, referring to his controversial theories on the existence of "centrifugal and encephalo-retinal nerve fibers in mammals."

The existence of such fibers would mean that there is a feedback system from the brain to the retina. Whether it exists is a subject of debate among neurophysiologists, neuroanatomists, and neuroophthalmologists.

Dr. Novokhatsky, who is chief of the Diagnostic Laboratory of the Filatov Research Institute of Eye Diseases and Tissue Therapy in Odessa, the largest ophthalmological institution in the Soviet Union, discussed his research at a seminar in Stone House.

The meeting was sponsored by the National Eye Institute in cooperation with the Fogarty International Center.

Dr. Novokhatsky has devoted the past 20 years to clinical research in diseases of the retina and optic nerve.

In addition to his investigations of centrifugal and encephalo-retinal fibers, he has been interested in the differential diagnosis of hereditary tapetoretinal degenerations and the classification of inflammatory diseases and atrophy in the optic tract.

An invitation to visit the United States was given to Dr. Novokhatsky by Sylvia N. Rachlin, executive vice president and founder of the Myopia International Research Foundation, a U.S. voluntary health agency.

Dr. Novokhatsky smiled as he explained that he hoped his research would soon pass into the third phase, referring to his controversial theories on the existence of "centrifugal and encephalo-retinal nerve fibers in mammals."

The existence of such fibers would mean that there is a feedback system from the brain to the retina. Whether it exists is a subject of debate among neurophysiologists, neuroanatomists, and neuroophthalmologists.

Dr. Novokhatsky, who is chief of the Diagnostic Laboratory of the Filatov Research Institute of Eye Diseases and Tissue Therapy in Odessa, the largest ophthalmological institution in the Soviet Union, discussed his research at a seminar in Stone House.

The meeting was sponsored by the National Eye Institute in cooperation with the Fogarty International Center.

Dr. Novokhatsky has devoted the past 20 years to clinical research in diseases of the retina and optic nerve.

In addition to his investigations of centrifugal and encephalo-retinal fibers, he has been interested in the differential diagnosis of hereditary tapetoretinal degenerations and the classification of inflammatory diseases and atrophy in the optic tract.

An invitation to visit the United States was given to Dr. Novokhatsky by Sylvia N. Rachlin, executive vice president and founder of the Myopia International Research Foundation, a U.S. voluntary health agency.

Dr. Novokhatsky smiled as he explained that he hoped his research would soon pass into the third phase, referring to his controversial theories on the existence of "centrifugal and encephalo-retinal nerve fibers in mammals."

The existence of such fibers would mean that there is a feedback system from the brain to the retina. Whether it exists is a subject of debate among neurophysiologists, neuroanatomists, and neuroophthalmologists.

Dr. Novokhatsky, who is chief of the Diagnostic Laboratory of the Filatov Research Institute of Eye Diseases and Tissue Therapy in Odessa, the largest ophthalmological institution in the Soviet Union, discussed his research at a seminar in Stone House.

The meeting was sponsored by the National Eye Institute in cooperation with the Fogarty International Center.

Dr. Novokhatsky has devoted the past 20 years to clinical research in diseases of the retina and optic nerve.

In addition to his investigations of centrifugal and encephalo-retinal fibers, he has been interested in the differential diagnosis of hereditary tapetoretinal degenerations and the classification of inflammatory diseases and atrophy in the optic tract.

An invitation to visit the United States was given to Dr. Novokhatsky by Sylvia N. Rachlin, executive vice president and founder of the Myopia International Research Foundation, a U.S. voluntary health agency.