Dr. Otto Bessey, NIEHS, Named Assoc. Director, Extramural Programs

Dr. Otto A. Bessey has been named associate director for Extramural Programs, National Institute of Environmental Health Sciences in Research Triangle Park, N.C. Dr. Bessey, who has been with NIEHS since 1967, has been serving as acting associate director.

During his tenure at the Institute, he has also been special assistant to the NIEHS Director and head of the Special Projects Branch, Extramural Programs.

Duties Described

Dr. Bessey will divide his time between his offices in Research Triangle Park and in the Westwood Bldg. He will coordinate all NIEHS extramural program planning, formulate major policies governing those activities, and direct scientists and administrators in carrying out the programs.

Dr. Bessey will have liaison and advisory responsibilities to other NIH programs and to agencies outside NIH, principally the Environmental Protection Agency and the Food and Drug Administration.

He will also serve as a full voting member of the NIH Executive Committee for Extramural Activities—the major advisory group to the NIH Director on extramural matters.

Education Noted

Dr. Bessey received his B.A. degree from the University of Montana, and his Ph.D. in biochemistry from the University of Pittsburgh.

He began his career as a research assistant at Columbia University and as a clinical biochemist at Margaret Hague Hospital. From 1934 to 1942 he was at the Harvard Medical School and School of Public Health as an associate in pathology and biochemistry.

He left the university to help develop the Public Health Research Institute of the City of New York. Later, he became director of the Institute and chief of the Extramural Programs.

Two Noted Scientists, Dr. Margaret Mead, Dame Janet Vaughan, Are FIC Scholars

Two eminent women scientists have been appointed Fogarty Scholarship-in-Residence.

This is the first time women have been invited to join this prestigious group of scientists from all over the world who continue their studies at NIH, lecture, write, and meet with other researchers on the campus.

One of the newly appointed scholars is Dr. Margaret Mead, world-famed anthropologist; the other is Dame Janet Vaughan, an outstanding British pathologist who was knighted for her work during World War II.

Dr. Mead, who will arrive on Thursday (Aug. 30), has been associated with the American Museum of Natural History in New York for most of her career. Now, she is the museum’s Curator Emeritus of Ethnology, and she is also adjunct professor of anthropology at Columbia University.

Dr. Mead, a graduate of Barnard College and Columbia University, has received 18 honorary degrees. Her books on her prolific studies of the peoples of the Southwest Pacific area have made her one of the few anthropologists whose name is almost a “household word.”

In May of 1971, the Hall of the Peoples of the Pacific was opened at the Museum of Natural History. The work is an exhibit of 45 years of Dr. Mead’s endeavors.

She is a Fellow of the American Academy of Arts and Sciences and the World Academy of Arts and Sciences. She is also a member of other scientific organizations.

Dr. Margaret Mead

Dr. Mead’s autobiography—Blackberry Winter—My Earlier Years—was published last year. She will remain a Fogarty Scholar through December and will live in Stone House.

Dame Janet Vaughan will arrive on Monday, Sept. 3, and stay until early December. She will also reside in Stone House.

During World War II, Dame Janet served as Director of the Medical Research Council Northwest London Blood Supply Depot. After the war, she was appointed principal of Somerville College, a women’s college at Oxford University. Dame Janet received both her undergraduate and medical degrees from that university.

Dame Janet most recently served as Honorary Director, Medical Research Unit for Research on Bone-Seeking Isotopes, in Oxford.

She has written two books—The Physiology of Bone, published in 1970, and The Effects of Irradiation on the Skeleton, which was published this year.

She has also written and had published a number of articles on blood diseases, blood transfusion, and the metabolism and biological importance of radioactive nuclides.

Dame Janet is a recipient of honorary degrees and has served on a number of scientific committees and commissions in England.
Lecture Series on Blood Banking Videotaped;
M. McGinniss, CC, Explains Immunohematology

A series of lectures on various aspects of blood banking have been videotaped by the Food and Drug Administration to train their blood bank inspectors.

Five of the lectures were given by Mary McGinniss, a research biologist in the Clinical Center's Blood Bank.

Ms. McGinniss discussed immunohematology. In her lecture she described the cross-match test used to determine patient-donor compatibility.

When foreign antigens from donor blood are introduced into a recipient, she explained, sensitization sometimes occurs.

This process is similar to preventive immunization for a disease, but in blood transfusion the end result can be harmful rather than protective.

The cross-match test, the most important part of the procedure, detects a patient's state of sensitization to foreign red blood cells. It is the reaction of the patient's serum to the actual cells to be transfused.

Compatibility testing, including the cross match, utilizes saline, albumin, enzyme, and indirect Coombs techniques.

The antibody screening test is an integral part of compatibility testing and is a process by which the recipient's serum is reacted with several known red cells to seek a positive reaction.

If one is found, the recipient's serum is reacted with many known red cells to identify the antibody causing the reaction.

Once an antibody is identified, only donor blood without the antigen is cross matched.

Staffers Take New Role

In July 1972 responsibility for inspecting and licensing all blood banks in the country was transferred from NIH to the Bureau of Biologics.

The CC Blood Bank began a close liaison with the new organization, and CC staffers assumed an advisory role.

Under an informal training program recently established, about 75 people spent 3 hours in the Blood Bank.

During that time, a working tour of the facility was conducted for participants to observe day-to-day blood banking techniques.

whether there actually is an increased risk of blindness for non-whites.

Evidence suggests that while nonwhite reporting may be somewhat more complete, that factor alone is not sufficient to account for the difference in blindness rates.

Another significant finding revealed by the study is that the only sizable male-female difference observed for both whites and nonwhites is the increased risk of blindness due to optic nerve disease for males.

Single copies of the publication are available free from the NEI Office of Information.

Quantities can be purchased from the Superintendent of Documents, U.S. Government Printing Office, for $2.10 postpaid or $2.75 at the bookstore.
Dr. Wm. Friedewald Heads NHLI Branch

Dr. William T. Friedewald was recently named chief of the National Heart and Lung Institute’s Clinical Trials Branch. This branch is part of the NHLI Office of the Associate Director for Clinical Applications and Prevention.

Dr. Friedewald’s branch plans and directs Institute-supported clinical research on new drugs and devices used in the prevention or treatment of cardiovascular disease.

Dr. Friedewald graduated from the University of Notre Dame in 1960. After receiving his M.D. degree from Yale in 1963 he served his internship at the Yale-New Haven Hospital.

Following 2 years with the National Communicable Disease Center, Dr. Friedewald returned to Yale, completing his residency in internal medicine in 1968. He spent a year of postgraduate study in biostatistics at Stanford.

He has been associated with NHLI since 1967 and joined the Institute staff in 1968. He headed the Consulting Section in the NHLI Biometrics Research Branch prior to his appointment as chief of the Clinical Trials Branch.

Major studies presently being conducted by this branch include the Coronary Drug Project, evaluation of therapeutic diets used for hyperlipoproteinemia (a blood lipid disorder) patients, and evaluation and comparison of regimens for the treatment of sickle cell anemia.

NCI Publishes ‘Leucemia Infantil’

A Spanish-language booklet on childhood leukemia, Leucemia Infantil, Folleto para los Padres, has been published by NCI.

The Children’s Health Center, San Diego, provided the translation of an NCI brochure by Gary Goldsmith and Drs. Stanford F. Friedewald, new chief of NHLI’s Clinical Trials Branch, spent 2 years at the National Communicable Disease Center.

CC Blood Bank to End Donor Payment System

Beginning Oct. 1 the Clinical Center Blood Bank will discontinue its policy of reimbursing donors for every other blood donation. The blood assurance program, however, will remain in effect.

NIH blood donors who make a voluntary donation at the Clinical Center before Oct. 1 may make one final paid donation within 3 months. No further payments will be made after this time for blood to be used for transfusion to CC patients.

Compiles With Policy

NIH blood donors now receive $25 for every other donation. The change, Blood Bank chief Dr. Paul Schmidt explains, is in compliance with HEW Secretary Caspar Weinberger’s recent recommendation of a nationwide all-volunteer blood donor policy.

The recommendation was made by a special HEW task force of which Dr. Schmidt was a member. The group was formed to study blood supply problems in this country.

Their proposal was based on evidence that commercial blood carries a higher risk of post-transfusion hepatitis than voluntarily donated blood. The risk is 10 times greater with commercial blood, according to a CC Blood Bank study.

States Reason

“The best way to eliminate the use of commercial blood nationally,” Dr. Schmidt points out, “is to discontinue payment for blood anywhere. We felt we had to start at home.”

Blood donated at NIH will continue to be recorded so that blood needed by NIH employees and their families at local hospitals, or anywhere in the country, will be replaced or credited as requested.

Bring a Friend

Dr. Schmidt says he is confident that NIH employees who have been regular donors in the past will continue in the future and urges them to bring a friend when they come to donate.

He points to Japan which successfully converted from 2 percent voluntary donations to 95 percent over the period from 1968 to 1970.

CC Blood Bank to End Donor Payment System

Beginning Oct. 1 the Clinical Center Blood Bank will discontinue its policy of reimbursing donors for every other blood donation. The blood assurance program, however, will remain in effect.

NIH blood donors who make a voluntary donation at the Clinical Center before Oct. 1 may make one final paid donation within 3 months. No further payments will be made after this time for blood to be used for transfusion to CC patients.

Compiles With Policy

NIH blood donors now receive $25 for every other donation. The change, Blood Bank chief Dr. Paul Schmidt explains, is in compliance with HEW Secretary Caspar Weinberger’s recent recommendation of a nationwide all-volunteer blood donor policy.

The recommendation was made by a special HEW task force of which Dr. Schmidt was a member. The group was formed to study blood supply problems in this country.

Their proposal was based on evidence that commercial blood carries a higher risk of post-transfusion hepatitis than voluntarily donated blood. The risk is 10 times greater with commercial blood, according to a CC Blood Bank study.

States Reason

“The best way to eliminate the use of commercial blood nationally,” Dr. Schmidt points out, “is to discontinue payment for blood anywhere. We felt we had to start at home.”

Blood donated at NIH will continue to be recorded so that blood needed by NIH employees and their families at local hospitals, or anywhere in the country, will be replaced or credited as requested.

Bring a Friend

Dr. Schmidt says he is confident that NIH employees who have been regular donors in the past will continue in the future and urges them to bring a friend when they come to donate.

He points to Japan which successfully converted from 2 percent voluntary donations to 95 percent over the period from 1968 to 1970.

CC Blood Bank to End Donor Payment System

Beginning Oct. 1 the Clinical Center Blood Bank will discontinue its policy of reimbursing donors for every other blood donation. The blood assurance program, however, will remain in effect.

NIH blood donors who make a voluntary donation at the Clinical Center before Oct. 1 may make one final paid donation within 3 months. No further payments will be made after this time for blood to be used for transfusion to CC patients.

Compiles With Policy

NIH blood donors now receive $25 for every other donation. The change, Blood Bank chief Dr. Paul Schmidt explains, is in compliance with HEW Secretary Caspar Weinberger’s recent recommendation of a nationwide all-volunteer blood donor policy.

The recommendation was made by a special HEW task force of which Dr. Schmidt was a member. The group was formed to study blood supply problems in this country.

Their proposal was based on evidence that commercial blood carries a higher risk of post-transfusion hepatitis than voluntarily donated blood. The risk is 10 times greater with commercial blood, according to a CC Blood Bank study.

States Reason

“The best way to eliminate the use of commercial blood nationally,” Dr. Schmidt points out, “is to discontinue payment for blood anywhere. We felt we had to start at home.”

Blood donated at NIH will continue to be recorded so that blood needed by NIH employees and their families at local hospitals, or anywhere in the country, will be replaced or credited as requested.

Bring a Friend

Dr. Schmidt says he is confident that NIH employees who have been regular donors in the past will continue in the future and urges them to bring a friend when they come to donate.

He points to Japan which successfully converted from 2 percent voluntary donations to 95 percent over the period from 1968 to 1970.

CC Blood Bank to End Donor Payment System

Beginning Oct. 1 the Clinical Center Blood Bank will discontinue its policy of reimbursing donors for every other blood donation. The blood assurance program, however, will remain in effect.

NIH blood donors who make a voluntary donation at the Clinical Center before Oct. 1 may make one final paid donation within 3 months. No further payments will be made after this time for blood to be used for transfusion to CC patients.

Compiles With Policy

NIH blood donors now receive $25 for every other donation. The change, Blood Bank chief Dr. Paul Schmidt explains, is in compliance with HEW Secretary Caspar Weinberger’s recent recommendation of a nationwide all-volunteer blood donor policy.

The recommendation was made by a special HEW task force of which Dr. Schmidt was a member. The group was formed to study blood supply problems in this country.

Their proposal was based on evidence that commercial blood carries a higher risk of post-transfusion hepatitis than voluntarily donated blood. The risk is 10 times greater with commercial blood, according to a CC Blood Bank study.

States Reason

“The best way to eliminate the use of commercial blood nationally,” Dr. Schmidt points out, “is to discontinue payment for blood anywhere. We felt we had to start at home.”

Blood donated at NIH will continue to be recorded so that blood needed by NIH employees and their families at local hospitals, or anywhere in the country, will be replaced or credited as requested.

Bring a Friend

Dr. Schmidt says he is confident that NIH employees who have been regular donors in the past will continue in the future and urges them to bring a friend when they come to donate.

He points to Japan which successfully converted from 2 percent voluntary donations to 95 percent over the period from 1968 to 1970.

CC Blood Bank to End Donor Payment System

Beginning Oct. 1 the Clinical Center Blood Bank will discontinue its policy of reimbursing donors for every other blood donation. The blood assurance program, however, will remain in effect.

NIH blood donors who make a voluntary donation at the Clinical Center before Oct. 1 may make one final paid donation within 3 months. No further payments will be made after this time for blood to be used for transfusion to CC patients.

Compiles With Policy

NIH blood donors now receive $25 for every other donation. The change, Blood Bank chief Dr. Paul Schmidt explains, is in compliance with HEW Secretary Caspar Weinberger’s recent recommendation of a nationwide all-volunteer blood donor policy.

The recommendation was made by a special HEW task force of which Dr. Schmidt was a member. The group was formed to study blood supply problems in this country.

Their proposal was based on evidence that commercial blood carries a higher risk of post-transfusion hepatitis than voluntarily donated blood. The risk is 10 times greater with commercial blood, according to a CC Blood Bank study.

States Reason

“The best way to eliminate the use of commercial blood nationally,” Dr. Schmidt points out, “is to discontinue payment for blood anywhere. We felt we had to start at home.”

Blood donated at NIH will continue to be recorded so that blood needed by NIH employees and their families at local hospitals, or anywhere in the country, will be replaced or credited as requested.

Bring a Friend

Dr. Schmidt says he is confident that NIH employees who have been regular donors in the past will continue in the future and urges them to bring a friend when they come to donate.

He points to Japan which successfully converted from 2 percent voluntary donations to 95 percent over the period from 1968 to 1970.
Marine Biologists Meet to Help Identify Problems Involved in Invertebrate Studies

In an effort to help identify resource-related problems which exist in the marine invertebrate research area, a panel of 20 prominent marine biologists was recently brought together on the NIH campus by the Animal Resources Branch of the Division of Research Resources.

Problems involved in the collection, culturing, and study of ocean marine invertebrates as laboratory animal models for biomedical research were investigated and summarized by the panel representing marine invertebrate supply firms, universities, private research institutions, and governmental agencies.

Recognizing the broad scope of the field (no one knows for certain how many marine invertebrates there are), the scientists confined their considerations to three major categories of species used for biomedical research.

They are:
- Mollusks — oysters, clams, squid, abalone, and snails;
- Arthropods — crabs, lobsters, shrimp, and barnacles; and
- Echinoderms — starfish, sea urchins, and sea cucumbers.

The groups of organisms are becoming increasingly valuable to the biomedical community because of the unique advantages they offer scientists. Many of the organisms have simple anatomical and physiological systems and can be investigated with ease. Probably the most frustrating aspect encountered by marine biologists concerns the lack of proper diagnostic techniques to detect diseases and assess the health status of certain marine organisms.

XX or XY?

Researchers candidly admit that as yet they have no method to determine whether the animals used in experiments are healthy or in a morbid condition. Scientists also lack a method of determining the sex of certain marine species.

Other problems discussed at the meeting include how to maintain organisms in an artificial environment prior to usage, methods of closer communication between marine interests and the biomedical community, and supply and transportation.

Also discussed were problems of laboratory culture and the need for medical specialists and veterinarians to enter the marine biological field to promote the health status of marine invertebrate animal models.

One of the ARB's important areas has been the development of animal models for multi-categorical studies related to human health. Programs in the past have dealt almost exclusively with the development of vertebrate animal models.

The branch recognizes, however, that many invertebrate animal organisms offer great potential for biomedical research.

Cold Study Reveals Some Vit. C Influence; More Research Needed

Recently 190 NIH employees participated in a cold study in which it was reported that vitamin C had a definite but small influence on the frequency, duration, or severity of colds.

However, Dr. Thomas C. Chalmers, Clinical Center Director and principal investigator for the study, cautioned that this effect may have been due to a breakdown in control procedures. A significant number of volunteers guessed their medication and may have been biased by this knowledge.

EHS Screens Volunteers

In fact, he said, those who received a placebo but thought they were taking vitamin C had fewer colds than those on vitamin C who thought they were taking the placebo.

The 811 volunteers for the study—conducted by CC investigators in cooperation with NIAID and DCRT scientists—were screened by the Employee Health Service.

The CC researchers caution that additional study and evaluation is necessary to determine conclusively whether or not vitamin C is effective against the common cold.

Panel Discusses Role Played by Racial Bias In Research Findings

A comprehensive review of research relating to minority groups was conducted yesterday by a special panel convened by the National Institute of Mental Health and the American Sociological Association at the Association's annual meeting in New York City.

A principal issue under discussion was whether racial bias has influenced research findings.

Fifteen outstanding scholars from the leading U.S. ethnic and racial groups reviewed, criticized, and responded to some of the controversial findings pertinent to their own groups.

Dr. Howard Taylor of Syracuse University gave a detailed presentation of psychological testing techniques which have been used to test the I.Q. and personality characteristics of minority groups. He disputed the findings of certain studies which purport to demonstrate an inherent inferiority of blacks.

Findings Discussed

Medical health of black students in white universities was discussed by Dr. Charles V. Willie of Syracuse University. Dr. Willie and Dr. Bertram S. Brown, Director of NIMH, co-edited the book, Racialism and Mental Health, published by the University of Pittsburgh Press.

Dr. Mary S. Harper, assistant chief of the NIMH Center for Studies of Minority Group Mental Health Programs, chaired the panel.
Melvin S. Day Attends U.S.-U.S.S.R. Information Symposium in Moscow

Mr. Day's interests are in scientific and technical information systems for the Soviet Union, and the National Library of Medicine (VNIMI), and the State Medical and Technical Information System. He was among eight U.S. specialists who participated in the recent symposium in Moscow. Following the 2-day meeting, the specialists visited information organizations at Novosibirsk, Yerevan, and Kiev.

In conclusion, the presentations were discussions of the integrated information system for the Soviet Union run by the All-Union Institute for Scientific and Technical Information (VINITI), and a specialized system of scientific and technical information services in instrument making.

Following the symposium, the group visited the VINITI, the All-Union Research Institute of Medical and Medical-Technical Information (VNIMI), and the State Public Library of the U.S.S.R. for Science and Technology (GPNTBSSSR).

The second half of the symposium, planned for Oct. 1-2, will include visits to NLM and the National Medical Audiovisual Center in Atlanta.

Symposium members will define areas for continued cooperation in the development of scientific and technical information dissemination, which will be reported to the Joint U.S.-U.S.S.R. Commission on Cooperation in Science, scheduled for Moscow in November.

NCI ANNOUNCES FIVE-YEAR CANCER PLAN

(Continued from Page 1)

and other health professionals is dependent on both these thrusts.”

Dr. Rauscher's report stresses programs, such as cancer centers, which deliver research results to people.

Management sharing with scientific and industrial groups outside Government, and construction of new laboratory and clinical facilities are cited for contributing to the expanded cancer effort.

Cooperation Emphasized

Dr. Rauscher emphasizes the cooperative aspect of the National Cancer Program, citing cancer research by other NIH components, and also cancer research by voluntary groups, private industry, and on an international scale.

The Report of the National Cancer Advisory Board states that all aspects of the National Cancer Program are making progress and calls for continuation of training programs and full funding of the National Cancer Program in 1973 and 1974.

Chairman of the 23-member Board is Dr. Jonathan E. Rohds, University of Pennsylvania School of Medicine.

The Strategic Plan defines the goal of the National Program and its seven objectives. It also includes the major policies for conducting the National Cancer Program, and a 5-year projection covering research, cancer control and cancer centers.

This projection outlines the research and cancer control areas to be given high priority for implementing and increasing support.

The Plan resulted from 42 planning sessions between October 1971 and March 1972 involving 250 laboratory and clinical scientists in most biomedical and clinical disciplines. An Operational Plan is expected to be completed late in fiscal year 1974.

The demonstration role of the new NCI Cancer Control Program is described, and the role of cancer centers as focal points of research, development and demonstration of detection, diagnostic and treatment techniques is also illustrated.

The Digest of Scientific Recommendations for the National Cancer Plan consists of detailed analyses by the 250 scientists who participated in the planning sessions of what must be done to accomplish the seven National Cancer Program objectives. The objectives are:

1. Reduce the effectiveness of external agents for producing cancer;
2. Modify individuals in order to minimize the risk of cancer development;
3. Prevent transformation of normal cells to cells capable of forming cancers;
4. Prevent progression of precancerous cells to cancers, the development of cancers from precancerous conditions, and spread of cancers from primary sites;
5. Achieve an accurate assessment of (a) the risk of developing cancer in individuals and in population groups and (b) the presence, extent and probable course of existing cancers;
6. Cure cancer patients and control the progress of cancers, and
7. Improve the rehabilitation of cancer patients.

In the midst of your illness you will promise a goat, but when you have recovered, a chicken will seem sufficient.—African Proverb.
Twin Register Dr. Schwartz Proves Valuable Resource for Clinical Research

The slit lamp or biomicroscope allows Dr. Schwartz to examine the anterior portion of an identical twin’s eye, especially the cornea. Her sister waits for her turn.

“Studies of twins offer interesting and valuable opportunities for genetic and epidemiologic investigations but have found comparatively little use in eye research, particularly in the United States,” according to Dr. J. Theodore Schwartz.

Dr. Schwartz, an ophthalmologist in the National Eye Institute’s Office of Biometry and Epidemiology, is chief of the Section on Ophthalmic Field and Developmental Research. For nearly 10 years, he has been conducting ophthalmologic studies on twins and has assembled a registry “to identify a group of twins who would be readily available for multiple clinical examinations.”

Of the 700 pairs of twins registered, about 47 percent are identical—developed from the splitting of one fertilized egg.

Given Eye Examination

Fraternal twins—resulting from the separate fertilization of two eggs—are no more similar genetically than ordinary siblings but tend to be exposed to a similar cultural and physical environment. All twins in the registry are from the Metropolitan Washington area, and about half have already received a thorough eye examination at the Washington Hospital Center.

In addition to data from these eye examinations, the twin registry contains such information as medical history, age, hand dominance, race, and other pertinent details—although whether or not the twins live together.

There are several kinds of twin studies which can be conducted. In the classical twin study, the relative influence of hereditary and environmental factors on a particular trait or disease are investigated.

Dr. Schwartz and his associates recently completed a twin heritability study on the effect of corticosteroids—compounds often used to suppress inflammation—on intraocular pressure.

The study, done in collaboration with the National Heart and Lung Institute, involved 80 pairs of identical and like-sex fraternal twins 15 years of age and older.

The researchers investigated the theory that the rise in intraocular pressure which occurs in some patients after application of topical steroids is an inherited response.

This concept led to a further hypothesis that chronic simple glaucoma, which is associated with elevated intraocular pressure, is an inherited disorder.

However, the group’s study showed that inheritance played a minor role in its association with steroid response. Dr. Schwartz explained, “This new finding is at variance with the widely accepted genetic hypothesis and marks the need for further investigation.”

In another type of twin study, the therapeutic trial, identical twins having the same disease are given different treatment to compare the relative benefit.

Dr. Schwartz is conducting a trial to determine the effectiveness of a treatment aimed at retarding the progression of myopia (nearsightedness). Twenty-five pairs of young identical twins similarly myopic are participating.

In this investigation one co-twin receives specially prescribed bifocal lenses and special drops in his eyes before going to sleep; as the control, the other twin wears conventional eyeglasses.

Through this use of identical twins, Dr. Schwartz noted, it is possible to arrive at conclusions with fewer patients because treatment is likely to be the primary factor influencing the outcome.

Several other investigations utilizing the twin registry have also been undertaken in collaboration with NICHD and NIDDR as well as the NHLD.

NIH Visiting Scientists Program Participants

<table>
<thead>
<tr>
<th>Date</th>
<th>Name</th>
<th>Institution</th>
<th>Department</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>8/1</td>
<td>Dr. Gurmit S. Aulakh</td>
<td>India, Cytogenetic Oncology Section</td>
<td>National Cancer Institute, Bldg. 31</td>
<td>Visiting Scientist</td>
</tr>
<tr>
<td>8/1</td>
<td>Dr. Jacqueline Whang-Peng</td>
<td>NCI, Bldg. 16, Room 6B10</td>
<td>National Cancer Institute, Bldg. 16</td>
<td>Visiting Scientist</td>
</tr>
<tr>
<td>8/1</td>
<td>Dr. Hillary Ben-Horin</td>
<td>Israel, Laboratory of Chemical Pharmacology</td>
<td>National Cancer Institute, Bldg. 37</td>
<td>Visiting Scientist</td>
</tr>
<tr>
<td>8/1</td>
<td>Dr. Vincent T. Oliverio</td>
<td>NCI-DCT, Bldg. 10, Room 6N119</td>
<td>National Cancer Institute, Bldg. 10</td>
<td>Visiting Scientist</td>
</tr>
<tr>
<td>8/1</td>
<td>Dr. Thirayuth Glinosukon</td>
<td>Thailand, Carcinogen Metabolism and Toxicology Branch</td>
<td>National Cancer Institute, Bldg. 37, Room 3B21</td>
<td>Visiting Scientist</td>
</tr>
<tr>
<td>8/1</td>
<td>Dr. Umeo Ito</td>
<td>Japan, Laboratory of Neuroepidemiology</td>
<td>National Cancer Institute, Bldg. 37, Room 3A19</td>
<td>Visiting Scientist</td>
</tr>
<tr>
<td>8/1</td>
<td>Dr. Robert E. Oakey</td>
<td>United Kingdom, Pregnancy Research Foundation</td>
<td>National Cancer Institute, Bldg. 37, Room 3B22</td>
<td>Visiting Scientist</td>
</tr>
<tr>
<td>8/1</td>
<td>Dr. John D. Townsley</td>
<td>NICHD, Bldg. 10, Room 5D15</td>
<td>National Institutes of Health, Bldg. 10</td>
<td>Visiting Scientist</td>
</tr>
</tbody>
</table>

Edw. McManus Named NEI Executive Officer

Edward McManus was recently appointed as executive officer of the National Eye Institute. He previously was financial management officer of the National Library of Medicine.

In his new position, Mr. McManus will serve as the principal advisor to the Director and other key NEI officials on all phases of administration and management.

He succeeds James G. Hill, who has been named as assistant to the administrative officer of the National Library of Mental Health’s intramural research program, and in 1968 became administrative officer of the Division of Research Resources.

While at DRR, Mr. McManus was selected for HEW’s long-term training program at the Center for Public Policy and Administration, University of Wisconsin at Madison, where he earned a master’s degree in public policy and administration.

He returned to DRR and served as assistant executive officer until his transfer to NLM in 1971.

R & W Sponsors a Wide Variety of Clubs

If you’re interested in finally getting rid of that midriff bulge, discovering other radio hams, or tuning up with fellow music enthusiasts, NIH’s Recreation & Welfare Association may have just what you’re looking for.

Nearly 30 R & W-sponsored clubs will be in full swing this fall. Contact the club chairmen for further information.

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>CHAIRMAN</th>
<th>BLDG/RM</th>
<th>PHONE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ART CLUB</td>
<td>Walter Clark</td>
<td>Bldg. 14/200</td>
<td>301-345-3535</td>
</tr>
<tr>
<td>ARCHEERY CLUB</td>
<td>Leo Leitner</td>
<td>Bldg. 36/2A-03</td>
<td>61111</td>
</tr>
<tr>
<td>RADMINTON</td>
<td>Dr. Ruth Dunlap</td>
<td>Bldg. 31/8A-35</td>
<td>64927</td>
</tr>
<tr>
<td>BADMINTON</td>
<td>Dr. Oscar Young</td>
<td>Bldg. 36/2A-03</td>
<td>6495</td>
</tr>
<tr>
<td>BASKETBALL</td>
<td>Dr. John Wolff</td>
<td>Bldg. 36/2A-03</td>
<td>6495</td>
</tr>
<tr>
<td>TOONFLIGHT</td>
<td>Dr. John Wolff</td>
<td>Bldg. 36/2A-03</td>
<td>6495</td>
</tr>
<tr>
<td>GOLF—MEN’S</td>
<td>Dr. John Wolff</td>
<td>Bldg. 36/2A-03</td>
<td>6495</td>
</tr>
<tr>
<td>GOLF—LADIES</td>
<td>Dr. John Wolff</td>
<td>Bldg. 36/2A-03</td>
<td>6495</td>
</tr>
<tr>
<td>GOLF—WOMEN’S</td>
<td>Dr. John Wolff</td>
<td>Bldg. 36/2A-03</td>
<td>6495</td>
</tr>
<tr>
<td>RACQUETBALL</td>
<td>Dr. John Wolff</td>
<td>Bldg. 36/2A-03</td>
<td>6495</td>
</tr>
<tr>
<td>ORCHESTRA</td>
<td>Dr. John Wolff</td>
<td>Bldg. 36/2A-03</td>
<td>6495</td>
</tr>
<tr>
<td>RADIO</td>
<td>Dr. John Wolff</td>
<td>Bldg. 36/2A-03</td>
<td>6495</td>
</tr>
<tr>
<td>RIDING CLUB</td>
<td>Dr. John Wolff</td>
<td>Bldg. 36/2A-03</td>
<td>6495</td>
</tr>
<tr>
<td>BAILING CLUB</td>
<td>Dr. John Wolff</td>
<td>Bldg. 36/2A-03</td>
<td>6495</td>
</tr>
<tr>
<td>NIH SWIMMERS</td>
<td>Dr. John Wolff</td>
<td>Bldg. 36/2A-03</td>
<td>6495</td>
</tr>
<tr>
<td>SKI CLUB</td>
<td>Dr. John Wolff</td>
<td>Bldg. 36/2A-03</td>
<td>6495</td>
</tr>
<tr>
<td>SKIL MASTERS</td>
<td>Dr. John Wolff</td>
<td>Bldg. 36/2A-03</td>
<td>6495</td>
</tr>
<tr>
<td>SOFTBALL</td>
<td>Dr. John Wolff</td>
<td>Bldg. 36/2A-03</td>
<td>6495</td>
</tr>
<tr>
<td>STAMP CLUB</td>
<td>Dr. John Wolff</td>
<td>Bldg. 36/2A-03</td>
<td>6495</td>
</tr>
<tr>
<td>TARTAN TENNIS</td>
<td>Dr. John Wolff</td>
<td>Bldg. 36/2A-03</td>
<td>6495</td>
</tr>
<tr>
<td>TENNIS</td>
<td>Dr. John Wolff</td>
<td>Bldg. 36/2A-03</td>
<td>6495</td>
</tr>
<tr>
<td>TOASTMARTERS</td>
<td>Dr. John Wolff</td>
<td>Bldg. 36/2A-03</td>
<td>6495</td>
</tr>
<tr>
<td>TRAVEL</td>
<td>Dr. John Wolff</td>
<td>Bldg. 36/2A-03</td>
<td>6495</td>
</tr>
<tr>
<td>VOLLEYBALL</td>
<td>Dr. John Wolff</td>
<td>Bldg. 36/2A-03</td>
<td>6495</td>
</tr>
</tbody>
</table>

Nearly 30 R & W-sponsored clubs will be in full swing this fall. Contact the club chairmen for further information.
Mailing Labels

Revised mailing labels may now be purchased from the Self-Service stores. The new indicia labels come in two quantities—pads of 25 (punched back) and self-adhesive pin-feed rolls of 1,000. The continuous feed rolls allow use of DORT computers to address the labels through the Wyburn system. The special fourth class label is designed to save B/I/D's postage when mailing out large quantities of printed matter.

Special Fourth Class Book labels for items weighing 4-8 pounds have red lettering on a white background. Postage is 90 cents compared to using $1.50 first class indicia. Stock numbers are 7-2312 (for pads of 25) and 7-2311 (for rolls of 1,000).

For first class packages under 4 pounds, postage is $1. The white label with black lettering may be used for mailing any packages under the specified weight. Stock numbers are 7-2305 (for 25) and 7-2306 (for 1,000).

In view of the changes mentioned above, any B/I/D that mails large quantities of printed matter may exchange the first class labels used in the past for fourth class book labels. Credit will be given for any difference in postage. Indicia labels that have been mis-typed, overstocked, etc.—in quantities of $25—may also be turned in to the Mail Room, Bug. St., Room B1E-02, for credit.
New Method for Treating Brain Tumors Combines 2 Distinct Types of Therapy

By Carolyn Holstein

A new experimental method for treating tumors originating in the brain, malignant gliomas, is being initiated by Dr. Ayub K. Ommaya, an associate neurosurgeon in the National Institute of Neurological Diseases and Stroke.

It consists of combining chemotherapy—using drugs to kill as much of the tumor as possible—followed by immunotherapy—summoning the body's own defense system to attack and kill off the remaining tumor cells and prevent new ones from growing. Dr. William Terry, chief of the National Cancer Institute's Immunology Branch, is collaborating in this aspect of the study.

"Malignant gliomas are one of the worst types of cancer in terms of quality and rate of survival," Dr. Ommaya said. "It can affect speech, vision, movement and feeling before causing death."

Dr. Ommaya and his associates have already found that two specific drugs when used together more than double the life expectancy of the average person with a brain tumor.

He indicated that one reason for the success of the two drugs—OCNU, one of the nitrosourea compounds, and 5-Azaguaine—is that CCNU has a quick entry but short acting time, while 5-Azakuaine takes longer to get into the tumor but lasts longer.

Another reason, he added, may be that the two drugs attack different portions of the tumor.

"Although patients receiving the combined chemotherapy had a significantly longer average survival time, all but two patients did not live longer than 27 months."

"We knew we could not safely increase the drug levels, so we sought another method to eradicate the tumor cells remaining after surgery, radiation and chemotherapy," he said.

Immunotherapy is being used experimentally to treat other types of cancer, but so far has not been successfully used in preventing the growth of brain tumor cells.

Its lack of success hinges on a biological "net"—the blood brain barrier—which prevents information about the presence of brain tumor cells from reaching the body's lymphocytes, its primary defense tools.

To circumvent this problem, Drs. Ommaya and Terry have devised a three-pronged immunotherapeutic regimen. One agent (commonly referred to as BCNU) will be used to arouse the body's lymphocyte system.

A second agent, the patient's own deadened tumor cells, will be used to "educate" the lymphocytes to attack specifically, and solely, the brain tumor cells. A third agent, purified protein derivative or PPD, will be injected directly into the tumor to lure the lymphocytes to it.

A new device has recently been developed which may eventually be used to determine the effectiveness of the combined therapy.

Dr. Ommaya also explained that this device, which will measure a tumor's size and shape by recording differences in density between tumor tissue and normal tissue. Some patients participating in the study will receive combined chemotherapy. Others will receive immunotherapy. A third group will receive both types of therapy.

"If at any time," Dr. Ommaya stressed, "we learn that any group is doing far better than the other two groups, we will immediately alter the program so all patients will receive the most effective treatment."