Ziegler is NCI Deputy Clinical Director; Other Staff Changes Announced

Dr. John L. Ziegler has been appointed deputy clinical director of the National Cancer Institute. He will be responsible for patient care activities of NCI's intramural clinical programs.

He will also assist in directing and supporting the clinical research programs in the Medicine, Pediatric, Surgery, and Radiation Branches, and the NCI-VA Medical Oncology Program at VA Hospital in Washington, D.C.

Dr. Ziegler joined NCI in 1966 as a clinical associate in the Medicine Branch. In 1967 he established the Lymphoma Treatment Center in Kampala, Uganda. He returned to NCI in 1972 as chief of the Pediatric Oncology Branch.

Dr. Ziegler received a B.A. degree from Amherst College in 1960, and an M.D. degree from Cornell University Medical College in 1964. Other changes on the scientific staff of NCI were announced by Dr. Vincent T. DeVita, director of the Institute's Division of Cancer Treatment.

Dr. George P. Canellos, NCI clinical director, will be leaving to become chief of medical oncology at the Sidney Farber Cancer Center in Boston. Dr. DeVita will temporarily assume the NCI post.

(See STAFF CHANGES, Page 6)

Dr. Daniel Bovet from Rome, Nobel Laureate, is New Scholar at FIC

Winning of the Nobel Prize for physiology and medicine in 1957, Professor Bovet has been awarded many other honors such as the Chevalier Legion d'Honneur from France in 1947.

A Nobel laureate who studies both the mind and the body is the newest Scholar-in-Residence at the Fogarty International Center.

Dr. Daniel Bovet, professor of psychobiology and psychopharmacology at the University of Rome, Italy, began 4 months' residence at NIH on July 9.

Visits Two Institutes

Professor Bovet will visit the laboratories of the National Institute of Mental Health, but will spend most of his time at the National Library of Medicine.

In Rome, Professor Bovet is a member of the Consiglio Nazionale delle Ricerche—the National Research Council of Italy.

Studies Drug Activity

In the field of pharmacology, he has explored the relations between chemical structure and biological activity of drugs and has searched for new drugs to use in clinical practice.

Dr. Filomena Nitti Bovet, his wife, is also a pharmacologist and will conduct research on Italian-U.S. documents at the National Archives during her visit here.

Dr. Eileen Hasselmeyer Awarded PHS Medal; Cited for 'Achievement'

Dr. Eileen G. Hasselmeyer, National Institute of Child Health and Human Development, was recently awarded the Public Health Service Commendation Medal for her work in fostering a research program on the sudden infant death syndrome — SIDS is the leading cause of death among infants under 1 year.

Dr. Hasselmeyer, who is chief of the Perinatal Biology and Infant Mortality Branch, was cited for her "creative leadership and achievement."

The medal was presented to her by NICHD Director Dr. Norman Kretchmer at the Institute's National Advisory Council June meeting.

The citation was also read at NICHD's first research reporting workshop held in the latter part of June for SIDS investigators.

(See DR. DAVIS, Page 7)

NIAID Director Dr. D. J. Davis Retires; Famed for His Studies in Epidemiology

Dr. Dorland J. Davis, Director of the National Institute of Allergy and Infectious Diseases for the past 11 years, will retire on Friday, Aug. 1. His retirement as assistant surgeon general, U.S. Public Health Service Commissioned Corps, completes a 36-year PHS career marked by scientific achievements and administrative innovations.

During his tenure as NIAID Director, his appraisal of medical research led to the initiation of a number of productive research programs.

The Journal of Allergy and Clinical Immunology, the official publication of the American Academy of Allergy, honored Dr. Davis by designating its June issue as the Dorland J. Davis Issue, "commemorating the dedication and service of Dr. Dorland J. Davis, Director, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 1964-1975."

All the scientific articles in the issue were authored by either NIAID scientists or grantees.

In the latter part of August—25th to the 29th—an international symposium on Antivirals with Clinical Potential held at Stanford University will be dedicated to Dr. Davis; under his direction, NIAID began and expanded its Antiviral Substances Program.

At the meeting, Dr. Davis will present the opening remarks on the topic—Measurements of Prevalence of Viral Infection. The proceedings of the meeting will be published in a separate supplement to the Journal of Infectious Diseases.

Dr. Davis received his B.S. degree from the University of Illinois, and his M.D. and his doctorate in public health from Johns Hopkins University.

In 1939 Dr. Davis joined PHS as a researcher with NIH's Division of Infectious Diseases. His entire career has been with NIH, except for duty in North Africa for the Department of State from 1943 to 1944.

Dr. Davis was chief of the Laboratory of Infectious Diseases, National Microbiological Institute (now NIAID) from 1954 to 1956. At that time, he was appointed NIAID's first associate director in charge of research (scientific director). He served in that position until 1964 when he became Institute Director.

Except for a 1-year State Department stint in North Africa, Dr. Davis' entire career has been with NIH. He entered the PHS 36 years ago.

(See STAFF CHANGES, Page 6)
NIH Record

Published biweekly at Bethesda, Md., by the Editorial Operations Branch, Division of Public Information, for the information of employees of the National Institutes of Health, Department of Health, Education, and Welfare, and circulated by request to interested writers and to investigators in the field of biomedical and related research. The content is reprintable without permission. Pictures are available on request. The NIH Record reserves the right to make corrections, changes or deletions in submitted copy in conformity with the policies of the paper and the Department of Health, Education, and Welfare.

NIH Record Office Bldg. 31, Rm. 28-03. Phone 49-62125

Editor Frances W. Davis
Associate Editor Fay Laviero
Staff Writer Heather Banks

Staff Correspondents
ADA, Judy Fleisher; CC, Thalia Roland; DCRT, Ruth Ketler; DRG, Sue Meadows; DRR, Jerry Gordon; DRS, Cora M. Suit; FIC, George Presson; NCI, Carolann Hooton; NEI, Bonnie Friedman Spellant; NIHl, Bill Sanders; NIAID, Kristi Kolinsky; NLMDD, Pat Gorman; NICHD, Daniel Taylor; NIDR, Sue Hannon; NEHS, Elizabeth Y. James; NIGMS, Wanda Warddell; NIMH, Betty Zubovic; NICNDS, Carolyn Holstein; NLM, Frann Patrick.

Monette C. Ross, Shops Section Chief, Retires After 17 Years at NIH

Monette C. Ross, Division of Engineering Services, retired from the Federal Government after 17 years at NIH—for almost 15 of those years he headed DES's Shops Section. For his work here, he received a Special Achievement Award on the day he retired.

In 1958, Mr. Ross came to the campus from the military service where he had held the rank of lieutenant colonel. He came here as a maintenance engineer in the Construction Engineering Section, PEB. Two years later, he was named chief of the Shops Section.

There, Mr. Ross planned, coordinated, and scheduled the work of about 140 skilled craftsmen in the electrical, mechanical, plumbing, carpentry, sheet metal, and painting trades.

NIH colleagues and co-workers attended a farewell party for Mr. Ross where he was presented with a number of gifts for his mechanical and carpentry hobbies, and gifts to use when he goes camping—his favorite pastime.

John Cox, chief of the General Applications Branch, Office of Computer and Communications Systems, National Library of Medicine, received the Sixth Regents Award for Scholarship or Technical Achievement. The award to Mr. Cox—for his "exceptional technical and managerial contributions to the development of MEDLARS II"—was presented on June 26 during the NLM Board of Regents meeting.

At the farewell party, Mr. Ross (r) receives his award-winning certificate and congratulations from R. R. Holliday, DES Director.

NCI Report on Survival Trends for 48 Types Of Cancer Is Released

The National Cancer Institute has released a report on survival trends among white cancer patients diagnosed between 1960 and 1971 in some 100 U.S. hospitals.

The NCI scientists found that survival has improved for some cancers, while remaining essentially unchanged for others.

The study measured trends in survival for 48 types of cancer from the 1950's to the 1960's with provisional one-year data on patients diagnosed in the early 1970's.

Data for the report, entitled "Recent Trends in Survival of Cancer Patients 1960-1971," were provided by a group of cancer registries which have monitored an estimated 10 percent of cancer patients in the U.S. since the 1940's. The report was edited by Lillian M. Axtell and Dr. Max H. Myers, of NCI's End Results Section.

One-year, three-year, and five-year survival rates were reported for 230,502 patients who were diagnosed between 1960-64 and 1965-69. One-year provisional survival rates were provided for 45,443 patients diagnosed in 1970-71.

The hospitals in the study included all hospitals in Connecticut, hospitals which treated approximately one-third of the cancer cases diagnosed in California, several hospitals in the Boston metropolitan area, and six large university hospitals in other sections.

Patients with cancers of the prostate, testis, kidney, bladder, brain, thyroid, larynx, and melanoma of the skin who were diagnosed during the late 1960's experienced more favorable survival than those diagnosed during the 1950's or early 1960's.

Among women with breast cancer, 5-year survival increased from 60 percent in the 1950's to 64 percent in the late 1960's, reflecting the increased proportion of women diagnosed during 1965-69 with localized disease.

For male patients with Hodgkin's disease, 5-year survival improved from 31 percent in the 1950's to 38 percent during 1960-64 and 52 percent during 1965-69. The pattern was similar for women.

One-year survival for children with acute leukemia improved markedly during the 1960's, and provisional results for children diagnosed in 1970-71 suggest that this upward trend is continuing. However, 5-year survival has progressed at a much slower pace in this study.

Among patients with lymphosarcoma or reticulum cell sarcoma—forms of non-Hodgkin's lymphoma—little chance in survival was evident except for patients diagnosed in 1970-71, whose one-year provisional survival rates suggest that the 5-year rates will improve during the 1970's.

This report supplements the 1972 NCI report, "End Results in Cancer Report No. 4," which analyzed survival of white cancer patients diagnosed 1940 through 1969. In the earlier report, 5-year survival was not available on patients diagnosed during 1965-69.

Single copies of the new report are available free of charge from the Office of Cancer Communications, NCI, Bethesda, Md. 20014.

John Gordon DuBay has retired after a 35-year Government career during which he advanced from GS-1 to GS-15. Most recently serving as special assistant for organizational development in the Division of Research Services, he had been executive officer to four DRS Directors from 1962-1974.

He began his Federal service in 1940 with what is now the Social Security Administration. Prior to coming to NIH he conducted studies in personnel and financial accounting in the Office of the Surgeon General, PHS.

Mr. DuBay was instrumental in establishing the first EEO committee at the B/I/D level, hiring the first EEO coordinator, and conducting one of the first EEO conferences at NIH.

He was also responsible for establishing the first training officer position and the first management analysis office at the B/I/D level.

In 1973 he received the DHEW Superior Service Award in recognition of his many contributions to the effective management of programs supporting NIH research.

Mr. DuBay's retirement plans include oil painting classes, organ lessons, and travel. He also plans to continue raising Irish setters and judging dog shows.
A new technique in cell reconstruction using the biomedical million-volt electron microscope at the University of Colorado in Boulder, will enable researchers to mass produce millions of cells in different combinations of nuclei and cytoplasts.

This technique, developed by scientists in the university's department of molecular, cellular, and developmental biology, opens up areas of research, including prospects for generating haploid cells (cells with only half the number of chromosomes in body cells).

The process may also enable researchers to investigate the ability of cells to differentiate into nerve cells, muscle cells, and the rest of the specialized types of cells which make up man and other multicellular life forms.

The high voltage electron microscope at CU is one of two existing electron microscopes in the country being used for biomedical research.

The other one is located at the Laboratory of Biomedical Sciences. Sponsor: Dr. Daniel Nebert, NICHD, Bg. 10, Rm. 13N246.

13 — Dr. Paul F. Teychenne, Australia Office of the Associate Director, Sponsor: Dr. Donald Calne, NINCDS, Bg. 10, Rm. 6D20.

<table>
<thead>
<tr>
<th>KARYOPLAST PREPARATION</th>
<th>CYTOPLAST PREPARATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>radioactive nucleus</td>
<td>radioactive nucleus</td>
</tr>
<tr>
<td>0.5µ diameter</td>
<td>1µ diameter</td>
</tr>
<tr>
<td>ENUCLEATION</td>
<td>ENUCLEATION</td>
</tr>
<tr>
<td>Cytoplasm (discarded)</td>
<td>Cytoplasm (discarded)</td>
</tr>
<tr>
<td>Karyoplast</td>
<td>Karyoplast</td>
</tr>
</tbody>
</table>

Diagram explains reconstituted cell as evolved by university scientists. The karyoplast preparation (I) provides the nucleus for the "hybrid" cell composite, treated with a radioactive substance. The cytoplast preparation (II) includes latex spheres absorbed by the cell's cytoplasm. The cells are then split by centrifugal force and the components allowed to recombine. The hybrid cell is identified by the radioactive nucleus and a cytoplasm with latex spheres. These hybrids continue to divide, indicating they are still alive and viable, and their function unimpaired.

The CU scientists are now able to mass produce "hybrid" cells composed of nuclei from one set of mammalian cells, and cytoplasts of another set.

Drs. Keith R. Porter, George Yeomert, David M. Prescott, and Jerry Shay comprised the research team which developed the technique.

Using a special strain of mouse cells (L929), the CU scientists first treated the cell with a compound called cycloheximide, which is known to give the cell nucleus freedom to move to the outer edges of the cells.

At this point, only low centrifugal force is needed to pull the nucleus out of the cell and to break the thin thread between the nucleus and the cytoplasm.

In this way, the karyoplast (a body containing the nucleus) and the cytoplast (a body containing the remainder of the cytoplasm) are formed.

Two such treatments on different types of cells provide scientists with karyoplasts from one set of mouse cells and cytoplasts from another set. When these two parts of the cells are exposed to an inactivating virus, they re-fuse, and a mass of hybrid cells is produced.

Testing the success of the fusion was achieved by feeding a radioactive substance to one group of cells in culture, and tiny latex spheres (a plastic material similar to that added to latex paint) to another set of culture cells.

The radioactive substance is known to be deposited in the nucleus, and the large latex spheres to be taken up by the cytoplasm. When most of the resulting hybrid cells had both, CU scientists knew that the fusion was successful.

The resulting cells remained alive and continued to divide, thus proving that they were not impaired by the process.

Labs Use Technique

Laboratories throughout the United States have now adopted the new technique and are using it for their studies.

Using the million-volt electron microscope in conjunction with a scanning microscope, the CU scientists are able to get three-dimensional views and pictures (micrographs) of the smallest particles in the cytoplasm and the nucleus.

Cancer cell research is one of the major projects underway at CU. The study involves taking a nucleus from a "transformed cell" (cancer cell) and putting it inside the cytoplasm of a normal cell.

Another study involves taking a normal nucleus and putting it inside a cancer cytoplasm. Following such transplants, the relative influences of the nucleus and cytoplasm in cancer may be studied.

Research on muscular dystrophy is also being carried out by the Colorado investigators.

The million volt electron microscope has enabled the scientists to examine in depth normal and dystrophic nerve and muscle cells in mouse and chicken cell cultures. They have found large molecules within the nerve-muscle membrane system never previously seen by other researchers.

Research Explained

Using the new technique, the researchers are attempting to combine normal nerve cell parts with dystrophic nerve cell parts, and also normal muscle cell parts with dystrophic muscle cell parts.

The CU scientists point out that the field of molecular genetics grew from work primarily on E. coli, a one-celled bacteria found in human and animal intestines.

With the new technique, they hope to combine the nuclei of mouse spermatids—haploid reproductive cells not as highly differentiated as sperm—cells, with the cytoplast of mouse cells, so they can better study the various genes which are involved in all types of cell phenomena.
Here's the leader of the band—Anthony D'Angelo—who came to the Supply Operations Branch, OD, in 1960. He's a purchasing agent now, but he came here as a clerk-typist.

"Give me a typewriter, I can still type 80 words a minute—I'll back that up today."

Often, Mr. D'Angelo walks away from leading at the front to a rear position where he picks up the trumpet—that's his instrument. He's been playing it since he was 11 years old. At 8 years of age he was playing the French horn. He switched because he "liked the sound of the trumpet better."

He started playing both instruments in an orphanage where he lived from ages 6 to 16. The orphanage had a children's band. Mr. D'Angelo spied the French horn, "picked it up, started playing it, blowing into it, getting sounds out of it."

But it was the trumpet that he wanted to play, so he bided his time. "I had to wait until someone left, and then I replaced him."

Mr. D'Angelo enjoys playing at all functions at NIH, enjoys meeting all NIH'ers. The band plays for award ceremonies, Credit Union meetings, R&W functions, the CFC—just about whenever they're asked.

He not only likes to lead a band and play the trumpet, but he also likes to talk about music and what it means to him.

"It's like an out, it's fine, it gets you away from everyday pressure. I would like to have a band made up of 100 per cent NIH employees."

Mr. D'Angelo is faithful about attending rehearsals and practicing, and he expects everyone in the band to feel the same way, because, as he says, "To be good you've got to keep at it."

There's only two ways to sum up music: it's good or it's bad. If it's good you don't mess about it; you just enjoy. The words are by Louis Armstrong, the music is by Tony D'Angelo and his NIH Dance Band—and it's good.

Here at NIH we just sit back and enjoy. "Sit" may be the wrong word—inside ourselves we're dancing in the aisles. That band's rhythm starts the pulse beating, the feet tapping, and the hands clapping.

The band's repertoire ranges from rock 'n' roll, jazz, swing—you name it, they play it.

Most of the time they play dance music for events on the campus, they have gone downtown to HEW to play there, and they also play at after-work functions.

New songs, old songs, songs that ask questions, tell stories, demand answers, and songs that cause a nostalgic tear to course down a cheek. They toll out a song called "Girls", switch to
OF TONY D'ANGELO AND THE NIH DANCE BAND

Ain't she sweet, and come on strong with a song whose opening line tells obvious facts: Fish gotta swim and birds gotta fly.

Mr. D'Angelo leads the band; they practice most every Thursday night in the Masur Auditorium.

The rapport is splendid, the occasional banter is fun, but it is the underlying seriousness of the session that counts. The band really works at it. Mr. D'Angelo is no slay driver, but he is a serious taskmaster.

The members of the NIH Band are not all from NIH—11 members are.

Some are scientists and some are administrators. There are branch chiefs, a computer programmer, a personnel management specialist, a lab worker, and a clerk-typist.

Their careers here really run the gamut. But when they come together at rehearsals or professional engagements they are all musicians. Meet them.

Peter Negus is the youngest member in the band. When he was interviewed he had just been here a little over a month.

"This is my fifth week, but I plan to make it last awhile," said Mr. Negus, who is a clerk at NHLI.

He plays the bass trombone. He started playing about 16 years ago "— it goes back to the fourth grade," and he has great ambitions.

Mr. Negus spent 2 years at the Eastman School of Music where he studied music education, but it was a high school band that really sparked his interest in jazz.

"I heard a high school band, I was just mesmerized. I just stood there and gaped at the sounds, and this was it.

"I hope to make music my life work. I hope to teach and I hope to become head of the music department at a college!"

He aims high, but his ambitions may very well be realized; a musician in the band called him "one of the best."

Alan H. McKerrow, who has a degree in music from the University of New Mexico, is NIDR's administrative officer. He handles budget matters, personnel, space problems—there isn't an administrative duty that he doesn't do for NIDR's intramural scientists—but music came first. He was a professional musician before entering the Government.

He plays first trumpet in the band, and he started that instrument "because the kid next door had one."

"I also studied piano. I started out at age 8, I didn't dig it. I wish I had stuck with it. Good piano players are difficult to find.

"I was a musician before anything else, it's my favorite thing to do. I did nothing but music from 14 to 34, and then for 10 years I played as a sideline."

Mr. McKerrow has been in Government for 22 years. He started in Albuquerque as a personnel management specialist in Defense, came to NIDR's personnel office, and then moved on to administration.

He termed music "an itinerant business, you have to be ready to travel."

Here, he has the work he likes to do, and the music he loves to play.

Dr. Robert O. Scow heads NIA-MDD's Section on Endocrinology. He has been at NIH since 1948; he's an alto saxophone player who also plays the bassoon.

Dr. Scow received his M.D. from the University of California, S.F., and after interning went into basic research. Those were the years he didn't play.

His lab is in the CC. He came to work on Thursday night, heard music coming from the Masur Auditorium where the band was rehearsing. When he returned home he got out his saxophone.

He started playing that instrument and taking lessons at age 8. Then came the depression — "I played, but I didn't take lessons."

Dr. Scow numbers himself among the other musicians who find it exciting to play in the NIH Dance Band.

"I get a big kick out of finding out what I can do. It's the teamwork that makes this kind of music exciting. It's the close team work which is the essence of swing music."

He heaped praise on Mr. D'Angelo for his success in keeping the band going. "It's amazing that he's able to get 18 individuals together on a Thursday night."

Dr. Scow recently returned from Finland where he set up a research program at the University of Oulu, 150 miles south of the Arctic Circle.

While there, he took a real Finnish sauna, not the watered down American kind, but the real kind where, straight from sitting on hot bricks, one dashes into an icy cold lake—in icy cold weather. He also danced with a Polokha Group, a Finnish folk dance group. He may very well be the first American scientist to do that.

(Continued on Page 7)

Thomas Reed has his B.A. in music from Notre Dame. He played the tuba there and the string bass; here he plays the trumpet and the electric bass.

At Notre Dame he played in the marching, concert, and "pep" bands. The last is the one that "plays at football games and St. Patrick's Day Parades. I had a lot of fun."

For 4 years, in early spring during Easter break, Mr. Reed went on tour with the University band.

Mr. Reed is with NCI's Administrative Career Development Program assigned as administrative officer for the Division of Cancer Treatment, OD.

He came to NIH—to NIDR—soon after he graduated from Notre Dame. "Mr. McKerrow hired me."

Now he sings, dances, acts, plays bass, and is the musical director of a group formed by himself and his wife, and two other couples. Recently the group came to the Clinical Center and performed for the patients.

His first instrument was the trumpet—he started playing it in the fourth grade and kept at it until the ninth grade. Then he switched to the tuba "because it looked like an interesting instrument to play."

When he joined the dance band he switched back to the trumpet and said that change "was a challenge, music is fun no matter what you play."

Mr. Reed has lived in the NIH area since he was in the second grade—seems apropos to say "local boy makes good musician."
NCI's Dr. Cutler Retires From Biometry Branch, Ends 27 Years' Service

Dr. Sidney J. Cutler, associate chief of the Biometry Branch in NCI's Division of Cancer Cause and Prevention, retired recently after 27 years of Federal service.

Dr. Cutler, who has joined the Wayne State University School of Medicine as professor in the department of community medicine, holds a joint appointment as director of epidemiology and biostatistics at the Michigan Cancer Foundation.

Promoted Cancer Registries

While at the National Cancer Institute, Dr. Cutler promoted the use of cancer registries for assessing therapeutic results and for studying the occurrence of cancer and also popularized the use of actuarial methods in the description of patient survival.

Dr. Cutler received a B.S. degree from City College, New York; the M.A. degree from Columbia University in 1941, and his Sc.D. degree from the University of Pittsburgh in 1961.

From 1946-48 he was a statistician for the United Service for New Americans, later renamed the United Hias Service, which assists in resettling Jewish refugees and migrants from troubled areas.

In 1948 he was senior statistician for the New York City Department of Health. During 1947-48 he served as medical research statistician for the School of Aviation Medicine at Randolph Field, Tex.

Dr. Cutler joined NCI in 1948 as a statistician in the Biometry and Epidemiology Branch. In 1957 he was made head of the End Results Section of the Biometry Branch, becoming associate chief of the branch in 1971.

Medicine heals doubts as well as diseases.—Karl Marx

Researchers, Educator Are New Appointees To National Eye Council

Four new members—Dr. Jay M. Enoch, Dr. John E. Harris, Dr. A. Edward Maumenee, and Mrs. Tommie M. Young—have been appointed to the National Advisory Eye Council.

Dr. Enoch is graduate research professor of ophthalmology and psychology, University of Florida School of Medicine in Gainesville. He is the author of numerous papers on retinal receptor optics.

Dr. Harris has been professor and head of the department of ophthalmology, University of Minnesota, since 1959.

He previously served on the Council from 1969 to 1972. In 1957 he was the first recipient of the Friedenwald Award given by the Association for Research and Vision in Ophthalmology.

Dr. Maumenee has served for the past 20 years as director of the Wilmer Ophthalmological Institute and as professor and chairman of the department of ophthalmology, Johns Hopkins University School of Medicine.

He has received many awards, including the Lucien Howe Gold Medal of the American Medical Association section on ophthalmology. He served on the Council from 1969-1971.

Mrs. Young is presently on leave from the department of education, North Carolina State University, as a doctoral candidate at Duke University.

A member of the committee for the National Advancement of the Humanities, she has held teaching posts at several southern universities.

STAFF CHANGES

(Continued from Page 1)

Dr. Levine and Dr. Cancllos

STAFF CHANGES

Dr. Robert Young Heads NCI's Medicine Branch

Dr. Robert C. Young has been appointed chief of the Medicine Branch in NCI's Division of Cancer Treatment; he had been acting chief since 1974.

That branch conducts clinical studies of new and established anticancer agents, the biology of tumor cell growth, and the effects of anticancer agents on normal bone marrow.

Dr. Young joined the National Cancer Institute in 1967 as an investigator in the Leukemia Service of the Medicine Branch. From 1969-1970 he was a senior resident at Yale-New Haven Medical Center.

He returned to NCI's Medicine Branch, and 3 years later—in 1973—he became head of the Cellular Kinetics Section. Dr. Young will continue to head that section.

Dr. Young is known for his contributions to the treatment of Hodgkin's disease, the non-Hodgkin's lymphomas, and carcinoma of the ovary.

He received his B.S. degree from Ohio State University in 1960 and an M.D. degree from Cornell University Medical College in 1965.

Dr. Young is a member of the American Board of Internal Medicine, and he is a fellow of the American College of Physicians.

Malocclusion Studies May Help Overcome Disfiguring Problems, Muscle Imbalance

A group of scientists at the University of California at San Francisco School of Dentistry are testing their hypothesis that several types of malocclusion are due to improper balance among various muscles. It has been a widely-held belief that malocclusion is an inherited problem.

Dr. Egil P. Harvold and his associates plan electromyographic studies of individual muscles that are used in respiration, chewing, swallowing, and opening and closing the mouth. These studies are supported by grants from the National Institute of Dental Research. Harvold's group will also study the effects in animals of shortening some muscles to improve balance among various muscles. This procedure requires no surgical intervention, and it is necessary to learn which types of malocclusions respond to this treatment and whether the adjustments produced by the activator are stable after patients stop using the appliance.

This project may contribute information about the causes of abnormal development of the jaws and face, and how early intervention during active growth periods can be used to promote normal development.

Dr. Harvold also is studying an appliance called the Andersen activator which is used to help patients whose lower jaws are underdeveloped.

He has found that this appliance can, in certain cases, direct specific muscles to enhance the growth of the facial bones and erupting teeth and gradually bring them into more harmonious relations with the rest of the mouth.

This procedure requires no surgery or orthodontic bands. However, it is necessary to learn which types of malocclusions respond to this treatment and whether the adjustments produced by the activator are stable after patients stop using the appliance.

Dr. Heiner Westphal, a visiting scientist in the NICHD Laboratory of Molecular Genetics, was recently awarded one of Germany's highest honors—the Gerhard-Domagk Prize—for his contributions to experimental cancer research. The prize consists of cash and a gold medal. Dr. Westphal was cited for his studies on the molecular structure of SV-40 virus. That virus is known to cause cancer in animals. At NICHD, Dr. Westphal is working on the laboratory synthesis of adenovirus proteins. The study may identify various virus gene functions.
AND THE BAND PLAYS ON—18 members—the full complement gather together to play at NIH functions. At this session, the leader of the band walked to the rear, picked up his instrument, and tooted out a tune alongside the other trumpeters.

Dr. Rodney Ulane, a staff fellow in the Laboratory of Biochemistry and Metabolism, NIAMDD, plays lead alto saxophone in the band. “Primarily that’s what I feel most comfortable at, I started in the second grade. I had to be coerced at first to practice.”

Dr. Ulane took up the clarinet when he advanced to the sixth grade, and studied the flute in the first year of high school. He played the flute in the concert band and that instrument plus the saxophone in the marching band. Later, he joined the high school dance band. “That I really enjoyed, that was my first taste of swing music.”

During his undergraduate days—at St. Mary’s College in Minnesota—Dr. Ulane was a biology major—on a music scholarship. “They wanted me in their dance band.”

After graduation, Dr. Ulane was another scientist who “put down the saxophone, and took up the pipette.” He started playing again in 1973, and he told how come; it sounded familiar.

“I was doing an experiment on a Thursday night, when I came down to the lobby I heard the band. I went to see Tony D’Angelo, he told me to come around next Thursday. “Next day I bought some reeds, pulled out an old exercise book and started practicing. It’s a fantastic release, it releases my mind.”

“There are young people who hear our band, it’s their first exposure to swing music—they like it—most of them only hear music on records; very few people hear live music.

“Don’t care what stereo music set you have, the best stereo that can be put together is not the same as live music.”

Dr. Ulane likes and continues to listen to chamber music, but says “my main love is jazz, jazz of the fifties, sixties, and seventies.”

Two NIH’ers who play in the NIH Dance Band were unavailable when the interviews took place. They are Mimi McNeal, a computer programmer, DCBT, who plays the piano in the band and also plays the flute, and Dr. Allen P. Minton, NIAMDD, who plays electric bass in the band and has played bass violin in the Los Angeles Doctors’ Symphony and the Jewish Community Center Orchestra in Rockville. Dr. Minton also plays the guitar.

“IT’S A TREAT TO BEAT YOUR FEET
(Continued from Page 5)

Dr. Davis next turned to studies on influenza. His research contributed greatly to the present knowledge of this disease. Under his leadership, a network of early detection influenza laboratories was established in the United States.

The labs proved to be of major importance in epidemiology and virus typing during the influenza pandemic in 1957.

Travels Cited

During the late 1950’s, Dr. Davis traveled to, and evaluated disease problems and research opportunities in Central and South America, Alaska, and the McMurdo Sound area of Antarctica. He was the first PHS officer to visit the latter area.

Dr. Davis is known for his talent in handling diverse programs and people. His leadership was instrumental in developing an effective and timely NIAID research operation. His encouragement of research in tropical medicine and parasitic diseases has led groups of American scientists to specialize in the rare field of tropic medicine. He has also supported the development of programs for new vaccines and research materials.

Expanded Allergy Research

Dr. Davis was also instrumental in supporting the support for research on allergic diseases by encouraging the development of an intramural program in 1966.

Another major part of this NIAID program began in 1971 with the initiation of a network of Asthma and Allergic Disease Centers, now totaling 17, across the country.

Dr. Davis received the Edward Rhodes Stitt Award of the Association of Military Surgeons of the U.S. in 1955 for his work on epidemic conjunctivitis. He received the USPHS Meritorious Service Medal in 1967 and its highest honor, the Distinguished Service Medal, in 1971.

He is a member of several scientific societies and on the Board of Directors of the Gorgias Memorial Institute of Tropical and Preventive Medicine, Inc. Also, he is a fellow of the American Academy of Microbiology, American College of Preventive Medicine, and the American Academy of Allergy.

Today (Tuesday, July 29), a farewell reception for Dr. Davis will be given from 3 to 4:30 p.m. in the Bldg. 1 cafeteria. Other farewell parties have been given for Dr. and Mrs. Davis including a dinner on May 23 arranged by NIAID’s laboratory chiefs, the members of the Institute’s Board of Scientific Counselors, and Dr. John R. Seal, NIAID scientific director.

Also, more than 250 friends and associates attended a reception and buffet for Dr. Davis at the Kenwood Country Club on June 19. There he was presented with a PHS flag, a bound book of letters from more than 140 associates, and an album of photographs commemorating his PHS career.
3 Associate Directors of DCCR to Head Community, Intervention, Support Areas

Drs. Laurence B. Callan, James E. Hamner, III, and Kenneth M. Nelson have been appointed to head the three major areas of activity in NCI's Division of Cancer Control and Rehabilitation.

Dr. Callan has been appointed associate director for Community Activities, responsible for coordinating and assisting community groups, medical schools, and public and community health professionals in demonstrating and promoting proven cancer control intervention techniques in community settings.

Prior to his NCI appointment, he was the director of planning, evaluation, and development for the Navajo Health Authority, Window Rock, Ariz. Dr. Callan received his B.A., M.A., and Ph.D. degrees from Arizona State University.

Dr. Hamner has been appointed associate director for Intervention Programs. He will plan and direct programs to identify, field test, and evaluate cancer control intervention methods that are of immediate clinical or public health value, including demonstration projects in cancer prevention, detection, diagnosis, treatment, rehabilitation, and continuing care.

Dr. Hamner came to NCI in 1962 as chief of both the Section of Oncology in the National Institute of Dental Research and of the NIDR Primate Research Unit, Southwest Foundation for Research and Education, San Antonio, Tex.

Previously Held NCI Posts
In 1973, he came to NCI as program director for diagnosis in the Cancer Control Program, later renamed the Division of Cancer Control and Rehabilitation. He was appointed chief of the Detection, Diagnosis, and Pretreatment Evaluation Branch in 1974.

Dr. Hamner received his B.S. and D.D.S. degrees from the University of Tennessee, the M.S. from the Medical College of Virginia, and the Ph.D. in general pathology from Georgetown University.

Dr. Nelson has been appointed assistant director for Community Activities, coming to NIH last year from the Navajo Health Authority in Arizona.

Before joining NCI in 1974 as a special assistant to the director of DCCR, Dr. Nelson was chief of the neurosurgical service at the Albuquerque VA Hospital and assistant professor of surgery at the University of New Mexico School of Medicine.

He received his A.B. and M.D. degrees from Columbia University.

It is easy to philosophize: the philosopher is said to be one who bears with equanimity the sufferings of others. — William J. Mayo

Before his appointment as associate director for Intervention Programs, Dr. Hamner held positions in NIDR and NCI.

Dr. Callan, the associate director for Community Activities, comes to NIH from the Navajo Health Authority in Arizona.

Dr. Nelson is responsible for developing cancer control program activities that support the Division.

DCCR associate director for Supportive Services, including planning, evaluation, liaison, communications, and resources.

Come to NIH Last Year
Before joining NCI in 1974 as a special assistant to the director of DCCR, Dr. Nelson was chief of the neurosurgical service at the Albuquerque VA Hospital and assistant professor of surgery at the University of New Mexico School of Medicine.

He received his A.B. and M.D. degrees from Columbia University.

Dr. Nelson has been appointed assistant director for Community Activities, coming to NIH last year from the Navajo Health Authority in Arizona.

Dr. Nelson is responsible for developing cancer control program activities that support the Division.

DCCR associate director for Supportive Services, including planning, evaluation, liaison, communications, and resources.

Come to NIH Last Year
Before joining NCI in 1974 as a special assistant to the director of DCCR, Dr. Nelson was chief of the neurosurgical service at the Albuquerque VA Hospital and assistant professor of surgery at the University of New Mexico School of Medicine.

He received his A.B. and M.D. degrees from Columbia University.

It is easy to philosophize: the philosopher is said to be one who bears with equanimity the sufferings of others. — William J. Mayo

Minority Biomedical Program Is Extended
Two-year colleges, native American Indian tribes, and institutions with significant enrollment from ethnic minority groups are now eligible for research support under the Minority Biomedical Support Program, according to regulations published in the June 30 Federal Register.

When the Program was started in 1972, only 4-year academic institutions with a student enrollment of at least 50 percent from ethnic minority groups were eligible for grants.

Administered by the Division of Research Resources and designed to encourage participation by minority group members in biomedical research, the Program now funds 69 grants involving 75 such institutions.

Eligibility will now be extended to include:

- Two-year colleges with a traditionally high (more than 50 percent) minority student enrollment.
- Institutions with a significant student enrollment (not necessarily more than 50 percent) which is derived from ethnic minorities.
- An Indian tribe which has a recognized governing body and which performs substantial governmental functions, or an Alaska Regional Corporation as defined in the Alaska Native Claims Settlement Act.

The Lilly Award is donated by Eli Lilly and Company, and consists of $1000 and a medal. The award was presented to Dr. Cuatrecasas in New York during the annual meeting of the Association.