Dr. Robert Gallo, Three Other Scientists Awarded GM Cancer Research Prizes

NIH’s Dr. Robert C. Gallo and three other eminent scientists who have made breakthrough discoveries in understanding how cancer begins and how some cancers may be cured have been named winners of the $390,000 1984 General Motors Cancer Research Foundation prizes.

The four prize winners include three virologists—Drs. J. Michael Bishop, and Harold E. Varmus of the University of California School of Medicine at San Francisco, and Dr. Gallo of the National Cancer Institute.

Dr. Barnett Rosenberg, a physicist at the Barros Research Institute and Michigan State University in East Lansing, Mich., is the fourth investigator to be awarded one of the 1984 prizes.

All three—Drs. Bishop, Varmus and Rosenberg—have been funded by various NIH Institutes during several years: NIGMS, NCI, NEI, NINCCS and NIAID. Only Dr. Rosenberg is not a current NIH grantee.

Dr. Gallo was cited for being the first to isolate a virus causing a human cancer. Related research has brought him recent recognition for identifying the virus that probably causes Acquired Immune-Deficiency Syndrome (AIDS).

Exercise Can Reduce High Blood Pressure Caused by Stress, Animal Study Confirms

Despite the popularly held notion that exercise can modulate the effects of stress, scientists are only just now able to point to a controlled study that would substantiate that belief.

Researchers from the University of Tennessee, Knoxville, described that study last month at the 68th Annual Meeting of the Federation of American Societies for Experimental Biology in St. Louis.

In the study, which was supported by the National Heart, Lung, and Blood Institute and the Tennessee affiliate of the American Heart Association, Tennessee researchers—Drs. Ronald H. Cox, John W. Hubbard, James E. Lawler, and Mr. Brian J. Sanders, and Ms. Vicki P. Mitchell—found that daily swimming attenuated the elevation in blood pressure caused by the stress of tail shock in laboratory rats.

In recent years, stress has been related to a variety of illnesses, including cardiovascular disease, still the leading cause of death in the United States, claiming some 1 million lives every year. Stress is also a putative risk factor for hypertension—high blood pressure.

Studies have shown that regular exercise, by reducing body weight, shifting cholesterol to the high density lipoprotein carriers that have been shown to be beneficial, and reducing blood pressure, can retard the development or progression of cardiovascular disease.

Is it possible that exercise can also reduce the hypertension that arises from stress? While the lay press has been reporting for some time that exercise can modulate stress effects, scientists have not been convinced.

A major problem in the investigation of stress-induced hypertension is the elusive nature of the phenomenon. Chronic stress can elevate resting blood pressure in some, but by no means in all, laboratory animals. The lack of suitable experimental models has
The NIH Record

Published biweekly at Bethesda, Md., by the Editorial Operations Branch, Division of Public Information, for the information of employees of the National Institutes of Health, Department of Health and Human Services, and circulated by request to writers and to researchers in biomedical and related fields. The content is reprintable without permission. Pictures may be available on request.

The NIH Record reserves the right to make corrections, changes, or deletions in submitted copy in conformity with the policies of the paper and HHS.

NIH Record Office
Bldg. 31, Room 2B-03, Phone 496-2125

Editor
Herschel Dribb

Staff Writers
Joyce F. McCarthy
Anne Barber

Staff Correspondents
CC, Richard McManus: DCTR, Joan P. Sobel; DPM, Judy Fouche; ORG, Sue Meadows; OHR, Barbara Menick; DRS, Jim Doherty; PIC Susan P. Stark; NCI, Patricia A. Newman; NIMH, Marsha Corbett; NHB, Larry Blaser; NIA, Esther Solomon; NIAID, Jeannie Winnick; NIAID, Barbara Weldon; NICH, James Holday; NIDR, Judy Dove; NIEHS, Hugh J. Lee; NIGMS, Wanda Wardell; NIH Harry Ball; NICD, Carol Rowan; NLM, Marilyn Berman; NIAAA, Richard McManus: CC, Richard McManus; DCTR, Joan P. Sobel; DPM, Judy Fouche; ORG, Sue Meadows; OHR, Barbara Menick; DRS, Jim Doherty; PIC Susan P. Stark; NCI, Patricia A. Newman; NIMH, Marsha Corbett; NHB, Larry Blaser; NIA, Esther Solomon; NIAID, Jeannie Winnick; NIAID, Barbara Weldon; NICH, James Holday; NIDR, Judy Dove; NIEHS, Hugh J. Lee; NIGMS, Wanda Wardell; NIH Harry Ball; NICD, Carol Rowan; NLM, Marilyn Berman.

Training Tips

The following courses sponsored by the Division of Personnel Management are given in Bldg. 31.

<table>
<thead>
<tr>
<th>Course</th>
<th>Starts</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Career Development</td>
<td>9/25</td>
<td>9/11</td>
</tr>
<tr>
<td>Executive, Management</td>
<td>9/27</td>
<td>10/1</td>
</tr>
<tr>
<td>Supervisory Managing Performance</td>
<td>7/9</td>
<td>6/22</td>
</tr>
<tr>
<td>Administrative Systems</td>
<td>6/22</td>
<td>6/25</td>
</tr>
<tr>
<td>Word Processing Training (Advanced Xerox):</td>
<td>7/15</td>
<td>7/19</td>
</tr>
<tr>
<td>(IBM Display Writer):</td>
<td>9/29</td>
<td>10/3</td>
</tr>
<tr>
<td>Feedback</td>
<td>8/6</td>
<td>7/23</td>
</tr>
<tr>
<td>Basic</td>
<td>8/13</td>
<td>7/30</td>
</tr>
<tr>
<td>Advanced</td>
<td>8/20</td>
<td>8/6</td>
</tr>
<tr>
<td>Specialized Needs</td>
<td>8/27</td>
<td>8/13</td>
</tr>
<tr>
<td>DELPRO</td>
<td>7/23</td>
<td>7/11</td>
</tr>
<tr>
<td>(Delegated Procurement for new users only)</td>
<td>7/11</td>
<td>7/11</td>
</tr>
</tbody>
</table>

To learn more about these and other courses contact the Development and Training Operations Branch, DPM, 496-6371.

FAES Sponsors Conversational English Beginning July 2

The Foundation for Advanced Education in the Sciences will offer an intensive course in Conversational English called ILSPAN, beginning July 2 and ending July 30.

The class, which will meet Monday through Thursday from 5:30 to 7 p.m., is designed for speakers of languages other than English. Further information may be obtained by calling 496-7976.

M and N Parking Permit Names Must Be Renewed in July

General parking permits for NIH employees whose last name begins with M or N must be renewed during July.

Employees may renew their parking permits any weekday at the NIH Commuter Assistance Office, Bldg. 31, Room B1C19, between 8:30 a.m. and 3:30 p.m. Parking permits will also be available as follows:
- Blair Bldg., Wednesday, July 11, 1-2 p.m., Conf. Room 110;
- Federal Bldg., Wednesday, July 11, 8-9 a.m., Conf. Room B3;
- Landow Bldg., Wednesday, July 11, 2:30-3:30 p.m., Conf. Room C;
- Westwood Bldg., Wednesday, July 11, 9-11 a.m., Conf. Room 3.

Affected employees will receive a memo reminding them of the upcoming renewal and providing specific instructions on obtaining replacement permits.

Those with preferential (red) or carpool parking permits whose last name begins with M or N do not need to obtain new parking permits during July. New July general employee parking permits must be displayed beginning Wednesday, Aug. 1.

Tickets and Transportation To Baltimore Orioles’ Games

Baseball season is here, and R&W will provide you with tickets and bus transportation to Memorial Stadium on the following dates:
- Friday, June 22, New York Yankees (upper reserved seats); Friday, July 13, Chicago White Sox (upper box seats).

The bus will leave from Bldg. 31C at 5:30 p.m. Cost is $12.50 which includes bus transportation and seats. Sign up now at the R&W Activities Desk, Bldg. 31 or the Westwood R&W Gift Shop, Rm. 10.

Over 60, Normal Male Volunteers Needed

Ten male normal volunteers, healthy, and medication-free, are needed for a National Institute on Aging study on the drug theophylline and its effects on nerves and muscle physiology. Two volunteers are needed between the ages of 20-40, and the rest over 60.

Nerve and muscle studies will be done. A 3½-day inpatient stay is also required so patients can be given the drug. Volunteers will be paid. For more information, call Dr. Neal Cutler, 496-4754.

Highly Specialized Electrical Equipment Available Free

All equipment from a disassembled High Strength Electric Field Test Room is available free of charge to interested scientists. The equipment:
- Hipotronics Inc. Dielectric Test Set, Model 7200-5; 200,000 volt, 2.5 KVA Transformer; Solid State Controller and Display Unit; 15, 4’x8’ sheets of non-machinable 1”x2” phenolic; 600 square feet of heavy gauge memlary sheets (upper box seats).

Interested qualified biomedical researchers should contact Dr. Arthur Shoukas, Johns Hopkins University, (301) 955-6417 or Dr. Richard Burgess, NIH (301) 496-6561.
Sixty-five teams entered the 7th annual NIH Institute Challenge Relay Race held May 23. There were 5 female, 15 male, and 45 mixed teams totaling 325 runners. Although no records were set for the 2½ mile relay race run in 1½-mile segments, competition was particularly fierce this year.

Runners of all abilities strained and struggled for an extra inch as they reached the finish line. The all-female team race results were the most hotly contested, as only 4 seconds separated the 1st and 2nd place teams in this division.

Hepatitis A (FDA) with Phil Sny, Louis Mocca, Jerry Moore, Henry O'Connell and Russell Abbott won the overall race with the fastest time of 12 minutes, 12 seconds. Foxes II (NIADDK) with Anne Weisenburn, Jo White, Allison Wichman, Chris Grady and Caroline Bagley won the Women's division in 15 minutes, 51 seconds. These two teams will have their names engraved on the permanent Director's Trophy.

OFFICIAL RESULTS (INTEGRATED RESULTS OF 2 HEATS)

<table>
<thead>
<tr>
<th>PLACE</th>
<th>TYPE</th>
<th>TIME</th>
<th>TEAM NAME</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Male</td>
<td>12:17</td>
<td>Hepatitis A (FDA)</td>
</tr>
<tr>
<td>2</td>
<td>Male</td>
<td>13:02</td>
<td>Geronouts (NIA)</td>
</tr>
<tr>
<td>3</td>
<td>Male</td>
<td>13:08</td>
<td>First Order Processes (DRS)</td>
</tr>
<tr>
<td>4</td>
<td>Mixed</td>
<td>13:21</td>
<td>Nad's (NIHLBI) 1ST PLACE MIXED TEAM</td>
</tr>
<tr>
<td>5</td>
<td>Male</td>
<td>13:29</td>
<td>Lymphocyte Lightning B (NICD)</td>
</tr>
<tr>
<td>6</td>
<td>Male</td>
<td>13:55</td>
<td>Lymphonecins (NIAD)</td>
</tr>
<tr>
<td>7</td>
<td>Male</td>
<td>13:56</td>
<td>Blaze (DCRT)</td>
</tr>
<tr>
<td>8</td>
<td>Mixed</td>
<td>14:02</td>
<td>NIDA A (NIDA) 2ND PLACE MIXED TEAM</td>
</tr>
<tr>
<td>9</td>
<td>Male</td>
<td>14:03</td>
<td>George's Ninja (NIDR)</td>
</tr>
<tr>
<td>10</td>
<td>Male</td>
<td>14:08</td>
<td>Drool Team (NIIS)</td>
</tr>
<tr>
<td>11</td>
<td>Mixed</td>
<td>14:35</td>
<td>Jose's Horde (NICHD) 3RD PLACE MIXED TEAM</td>
</tr>
<tr>
<td>12</td>
<td>Male</td>
<td>14:38</td>
<td>Meranda's Morons</td>
</tr>
<tr>
<td>13</td>
<td>Mixed</td>
<td>14:40</td>
<td>Peef-one (NINCDS)</td>
</tr>
<tr>
<td>14</td>
<td>Male</td>
<td>14:42</td>
<td>Columbia Flyers (ODI)</td>
</tr>
<tr>
<td>15</td>
<td>Male</td>
<td>14:47</td>
<td>Wurtz Possible Runners</td>
</tr>
<tr>
<td>16</td>
<td>Male</td>
<td>14:51</td>
<td>Equivalent Units (CSAB)</td>
</tr>
<tr>
<td>17</td>
<td>Mixed</td>
<td>14:55</td>
<td>C.K. and Co. (NIMH)</td>
</tr>
<tr>
<td>18</td>
<td>Mixed</td>
<td>14:56</td>
<td>Biohazards (NIADDK)</td>
</tr>
<tr>
<td>19</td>
<td>Mixed</td>
<td>15:10</td>
<td>Westwood Runners (NCI)</td>
</tr>
<tr>
<td>20</td>
<td>Mixed</td>
<td>15:13</td>
<td>Synaptic Relay (NINCDS)</td>
</tr>
<tr>
<td>21</td>
<td>Male</td>
<td>15:16</td>
<td>Buller's Bulldogs (BDDG 7)</td>
</tr>
<tr>
<td>22</td>
<td>Mixed</td>
<td>15:18</td>
<td>Ward's Wonders (DCRT)</td>
</tr>
<tr>
<td>23</td>
<td>Mixed</td>
<td>15:23</td>
<td>Heart Breakers (NIHLBI)</td>
</tr>
<tr>
<td>24</td>
<td>Mixed</td>
<td>15:29</td>
<td>Skin Sprints (NCO)</td>
</tr>
<tr>
<td>25</td>
<td>Tie</td>
<td>Mixed</td>
<td>15:29</td>
</tr>
<tr>
<td>26</td>
<td>Mixed</td>
<td>15:30</td>
<td>Schard Pruders (NIADDK)</td>
</tr>
<tr>
<td>27</td>
<td>Male</td>
<td>15:38</td>
<td>Team Swine (NIHLBI)</td>
</tr>
<tr>
<td>28</td>
<td>Mixed</td>
<td>15:46</td>
<td>Wind Jammer (FDA)</td>
</tr>
<tr>
<td>29</td>
<td>Female</td>
<td>15:51</td>
<td>Foxes II 1ST PLACE FEMALE TEAM</td>
</tr>
<tr>
<td>30</td>
<td>Mixed</td>
<td>16:52</td>
<td>CPB-Fast Folks (NCI)</td>
</tr>
<tr>
<td>31</td>
<td>Mixed</td>
<td>15:55</td>
<td>Chariots of Fire (BB)</td>
</tr>
<tr>
<td>32</td>
<td>Female</td>
<td>15:56</td>
<td>Liquor is Quicker 2ND PLACE FEMALE TEAM</td>
</tr>
<tr>
<td>33</td>
<td>Mixed</td>
<td>16:01</td>
<td>1's Again (OD)</td>
</tr>
<tr>
<td>34</td>
<td>Mixed</td>
<td>16:04</td>
<td>Ray's Fatty Asses (NIHLBI)</td>
</tr>
<tr>
<td>35</td>
<td>Male</td>
<td>16:07</td>
<td>Psychogenetics Blue Jeans (NIMH)</td>
</tr>
<tr>
<td>36</td>
<td>Mixed</td>
<td>16:09</td>
<td>The Vectors (NIAD)</td>
</tr>
<tr>
<td>37</td>
<td>Mixed</td>
<td>16:13</td>
<td>Billie's Goats (NCI)</td>
</tr>
<tr>
<td>38</td>
<td>Mixed</td>
<td>16:24</td>
<td>Computer Whizzes (DCRT)</td>
</tr>
<tr>
<td>39</td>
<td>Mixed</td>
<td>16:26</td>
<td>Mad Techs (CC)</td>
</tr>
<tr>
<td>40</td>
<td>Tie</td>
<td>Mixed</td>
<td>16:26</td>
</tr>
<tr>
<td>41</td>
<td>Mixed</td>
<td>16:28</td>
<td>NAO's B (NIHLBI)</td>
</tr>
<tr>
<td>42</td>
<td>Mixed</td>
<td>16:31</td>
<td>Slow Pokes (NCI)</td>
</tr>
<tr>
<td>43</td>
<td>Mixed</td>
<td>16:33</td>
<td>Beepers (NIMH)</td>
</tr>
<tr>
<td>44</td>
<td>Mixed</td>
<td>16:35</td>
<td>Kid Power (NICH)</td>
</tr>
<tr>
<td>45</td>
<td>Mixed</td>
<td>16:49</td>
<td>Tag-a-Longs (DRS)</td>
</tr>
<tr>
<td>46</td>
<td>Mixed</td>
<td>16:52</td>
<td>DRR Road Runners (DRR)</td>
</tr>
<tr>
<td>47</td>
<td>Mixed</td>
<td>17:03</td>
<td>Epilones (NCI)</td>
</tr>
<tr>
<td>48</td>
<td>Tie</td>
<td>Mixed</td>
<td>17:03</td>
</tr>
<tr>
<td>49</td>
<td>Mixed</td>
<td>17:13</td>
<td>Friedman's Flyers (DRG)</td>
</tr>
<tr>
<td>50</td>
<td>Mixed</td>
<td>17:17</td>
<td>Axons (NIAD)</td>
</tr>
<tr>
<td>51</td>
<td>Female</td>
<td>17:23</td>
<td>Genetic Diversity (NIHLBI) 3RD PLACE FEMALE TEAM</td>
</tr>
</tbody>
</table>

Foxes II (NIADDK)—(I to r) Caroline Bagley, Anne Weisenburn, Jo White, Christ Grady, and Allison Wichman.

This year’s race was greatly aided by the outstanding cooperation and help provided by the NIH police and the ground maintenance department. Particular thanks is extended to Sgt. Herbert D. Jackson for his efforts to ensure and provide the best possible conditions for the runners.

The NIH Heath's Angels Running Club will cosponsor a party on Friday, July 13, at the FAES House from 4:30 to 7 p.m., at which time a videotape of the race will be shown and an ample supply of munchies, soda and beer will be provided. A $1 donation is requested.
NIH Grantee Named Inventor of Year for Implantable Pump

NIH grantee Robert E. Fischell of the Johns Hopkins University Applied Physics Laboratory has been named Inventor of the Year for developing an implantable pump that is designed to provide an alternative to injections for people who require medication on a continuing basis.

The Inventor of the Year Award is sponsored by Intellectual Property Owners, a trade organization that represents individuals holding patents, trademarks, and copyrights. The National Institute of Arthritis, Diabetes, and Digestive and Kidney Diseases partially supported development of the pump, which has important potential in treating diabetics who must have insulin.

Development of the pump was also supported by the National Cancer Institute, the National Institute of Child Health and Human Development, and the National Aeronautics and Space Administration.

Called programmable implantable medication system (PIMS), the new pump would automatically deliver preprogrammed doses of insulin to its wearer throughout the day. This would free the diabetic from daily injections. In addition, the delivery of insulin by the pump as needed, more closely mimics the natural action of the pancreas, the gland that normally makes insulin.

Unlike insulin pumps now commercially available, PIMS is fully implantable. It can be surgically inserted just beneath the skin of the abdomen and is not visible to an observer.

An outgrowth of an ongoing effort to apply space program technology to medicine, many of the pump’s functions are carried out by components used in satellites and space vehicles.

For example, the pump, which fits in the palm of a hand, has a small computer which can be programmed to deliver insulin in specified quantities throughout the day. The pump is programmed through a radio device held in front of the pump’s location in the body. A physician can even program the pump by telephone.

Using the programming device, a wearer can instruct the pump that an extra dose of insulin is needed in response to a snack or a large meal. The pump records exactly how much insulin the person receives during the day, and the physician can get this information through a telemetry system similar to that used in satellites.

The pump holds a 3-month supply of insulin, and can be refilled with a specially designed device that will release the insulin only when it is correctly inserted into the pump’s reservoir.

The pump is currently being tested with laboratory animals. Tests in human patients—possibly within a year—will determine the potential of the pump as a therapeutic device.

Other potential applications of the pump include delivery of morphine to relieve pain in terminally ill cancer patients and to deliver fertility or growth hormones.

Mr. Fischell, assistant head of the space department and chief of technology transfer for the department, has been honored for a number of his inventions in space and medical technology.

His other inventions include a rechargeable cardiac pacemaker, an artificial urinary sphincter, and a satellite spin control system.—Charlotte Armstrong

Lung Cancer Lab Findings Promise Improved Treatment

Even though the best available treatment for lung cancer in the United States can achieve long-term survival for only 12 percent of patients, a National Cancer Institute researcher believes there is reason to be optimistic about future treatment for this disease.

Dr. John D. Minna said he bases his optimism on “remarkable” laboratory findings about the cellular and molecular biology of lung cancer, findings he believes will “ultimately be of clinical benefit.”

A major advance, he said, has been the establishment of human lung cancer cell lines. Others include work with tumor “markers” and monoclonal antibodies to type lung cancer cells, determination of some of the growth factors required by human lung cancer cells, identification of certain oncoproteins in some of these cancers, and early studies to test sensitivity of human lung cancer cells to drugs and radiation.

Dr. Minna gave the Richard and Hinda Rosenberg Foundation award lecture at the 75th annual meeting of the American Association for Cancer Research in Toronto, Ontario recently. The award recognizes a scientist whose work has made, or gives high promise of soon making, a notable contribution to improved clinical care in the field of cancer.

Dr. Minna said that more than 80 percent of human cell lung cancers, 60 percent of adenocarcinomas and large cell carcinomas, and 40 percent of squamous cell lung cancers can be made to grow in culture.

“Lines retain the tissue and biochemical properties of the patients’ cancers,” he said, despite replication in cell culture for many years and despite transplantation in some strains of mice. And, Dr. Minna said, “the cell lines seem able to generate diverse, heterogeneous cell populations much like those seen in human cancers.”

To provide the most effective treatment, it is necessary to ascertain the exact cell type of a patient’s lung cancer. This may be difficult to do, because lung cancer cell populations can be diverse and overlapping.

Using cell lines, investigators have so far been able to define markers that distinguish small cells from non-small cell lung cancer, and small cell lung cancer from a variant form called SCLC-V, Dr. Minna said.

Researchers are also learning about the precursor (forerunner) cells of the various types of human lung cancers. Even though the four major types of human lung cancer appear to have distinct patterns of differentiation, Dr. Minna said, “evidence from some laboratories indicates they may all arise from a common precursor in the epithelial cells of the bronchus.”

Computer ABCs Are Easy at NIH’s Computer Center

For the past year, DCRT’s Computer Center’s Independent Training Assisted By Computer (ABC) has been available to all users of the center. Designed, developed, and installed by a team of Computer Center staff members, ABC displays lesson text at your terminal, handles questions and analyzes answers, monitors usage, handles multiple courses, and produces letters of credit for students completing courses.

To date, over 2,000 people have used ABC. This response, and students’ favorable comments have shown that ABC is an excellent way to use computers for learning.

The interactive ABC course, entitled “Introduction to WYLBUR,” is a convenient way to learn about WYLBUR, both the system and the Computer Center. The course teaches how to use WYLBUR to do word processing, to store information, and to run computer programs.

Thousands of people at NIH use WYLBUR every day. As a result of this popularity, requests for WYLBUR training flood the Computer Center’s Training Unit year after year. In the past, some requests could not be filled. Not until the advent of ABC did WYLBUR training become readily available to all who request it. Those persons who cannot travel to the Computer Center for a course or cannot schedule the time for a classroom course, have found ABC to be the most convenient way to learn about WYLBUR.

Registered users of the Computer Center can just sign on to WYLBUR and then type the command ENTER ABC. They can then browse through the WYLBUR course and brush up on individual topics and commands, or take the whole course.

There is no specific charge for using ABC itself; the only cost is for the computer time. The “Introduction to WYLBUR” course is available in two formats: at your computer terminal, and in printed form. To get the printed lessons, contact the Computer Center Technical Information Office (Bldg. 12A, Rm. 1017, 496-5431). If you need help getting started or have any questions about ABC, call the Computer Center Training Unit at 496-2339, or visit Bldg. 12A, Rm. 1025. —
NIH Staff Members Honored at DHHS Awards Ceremony

Eight NIH staff members were honored June 12 by HHS Secretary Margaret M. Heckler during the Department's Honor Awards Ceremony held in the Great Hall of the Hubert H. Humphrey Bldg. Dr. Edward N. Brandt, Jr., Assistant Secretary for Health, PHS, and Dr. Thomas E. Malone, NIH Deputy Director, assisted with the presentations, representing Dr. James B. Wyngaarden, NIH Director.

The Distinguished Service Award, the Department's highest honor award conferred on civilian employees, was presented to Dr. Robert A. Lazzarini, NINCDS, and Dr. George R. Martin, NIDR. They were recognized for their scientific achievements. Edward H. McManus, NEI, received the award for administrative achievements.

Sylvia Z. Edelstein, NINCDS, received the DHHS Outstanding Handicapped Employee of the Year Award.

Emily E. Johnson, NIGMS, was presented one of the Secretary's Special Citations for 10 Outstanding Employees of the Year and Juanita P. Cooke, NHLBI, received the HHS Equal Opportunity Achievement Award.

Secretary Heckler presented a certificate to John W. Boretos, DRS, for First Place (Color) in the DHHS Employee Photo Contest.

Secretary Heckler also recognized Dr. Samuel Broder, NCI, as a recent recipient of the Arthur S. Flemming Award for 1984.

A reception for HHS, PHS, and NIH officials, award recipients and their guests followed the ceremony.

The recipients’ pictures and citations follow:

Distinguished Service Award

Dr. Lazzarini

Scientific Category

Dr. Robert A. Lazzarini

Chief, Laboratory of Molecular Genetics, IRP, NINCDS

“For research and fundamental discoveries concerning viral and inherited neurological diseases.”

Dr. George R. Martin

Chief, Laboratory of Developmental Biology and Anomalies, NIDR

“For outstanding basic research that has significantly advanced our understanding of biological processes critical to the development, maintenance and repair of normal tissues.”

Secretary's Special Citation

For Ten Outstanding Employees of the Year

Ms. Johnson

Emily E. Johnson

Secretary (Stenography) to the Director, NIGMS

“For consistently outstanding performance and invaluable contributions to the Director, NIGMS, and to the Institute as a whole.”

DHHS Outgoing Handicapped Employee of the Year

Ms. Edelstein

Sylvia Z. Edelstein

Computer Systems Analyst

Office of Biometry and Field Studies, NINCDS

“For outstanding accomplishments, despite a handicap, as a Computer Systems Analyst and leader of a team developing data base management systems for medical applications.”

DHHS Equal Opportunity Achievement Award

Ms. Cooke

Juanita P. Cooke

Director, Office of Special Concerns, NHLBI

“For perseverance in implementing and advancing research opportunities for minorities and women as well as developing provocative interest in research careers in minority institutions.”

First Place (Color) DHHS Employee Photo Contest

Ms. Johnson

Emily E. Johnson

Secretary (Stenography) to the Director, NIGMS

“For distinguished achievement in photography for capturing the faces of “The People Department” by showing the triumphs of the human spirit of those in need and the dedication of those who serve science and medicine.”

Recipient of Major Non-HHS Award

Dr. Broder

Dr. Samuel Broder

Associate Director, Clinical Oncology Program, NCI

“For research in clinical immunology and leadership of the Clinical Oncology Program.”

Administrative Category

Mr. McManus

Edward H. McManus

Deputy Director, NEI

“For outstanding management skills in negotiating the organizational financial and policy aspects of an innovative collaborative multi-million dollar agreement with a major pharmaceutical company to test a new drug as a treatment for complications of diabetes.”
Fourteen NIH Publications Win Blue Pencil Awards

Fourteen NIH publications were recently awarded prizes in the 1984 Blue Pencil Publica­tions Contest of the National Association of Government Communicators.

The Golden Screen Award in videotape was presented to the National Heart, Lung, and Blood Institute for We Can't Go On Like This.

The National Institute of Arthritis, Diabetes, and Digestive and Kidney Diseases won second prize in Category 1, brochure or folder, for Prevention and Treatment of Kidney Stones, by James N. Fordham. In Category 3A, technical publications, one color, the NICHD Pediatric Research Digest by Brent Jacquet won honorable mention.

Making PSAs Work, National Cancer Institute, by Needham Porter Novelli (under con­tract from NCI), shared first prize in Category 3B, technical publications, two or three colors. The NHLBI shared second prize in the same category for The Physician's Guide: How to Help Your Hypertensive Patients Stop Smoking.

In Category 6B, book for technical audience, first prize was awarded to NHLBI for Heart to Heart: A Manual on Nutrition Counseling for the Reduction of Cardiovascular Disease Risk Factors, edited by Constance Raab and Jeanne L. Tilleryon, R.D., M.A.

The Division of Research Resources' Research Resources Reporter by James August­ine won third prize in Category 7, newsletter. In Category 9, annual report, honorable men­tion was awarded to both the Division of Computer Research and Technology, DCRT Information Office, for Fiscal Year 1983 An­nual Report, and to the NIADDK for the Second Annual Report of the Director by Dr. Ben­jamin Burton.

In Category 10, news release, NIH took the top three prizes. First prize was awarded to NICHD for Results of Largest Study on Vas­ectomy Revealed by Maureen Gardner; sec­ond prize went to NICHD for Surrogate Em­bryo Transfer with Hormone Therapy by Susan Johnson; and third prize was awarded to NCI for Community Clinical Oncology Pro­gram by Alice Collins Hamm.

Medical Update on the Pill, NICHD, by Maureen Gardner won second prize in Cata­gory 12, feature story.

In Category 14, visual design, two prizes went to the NCI. Children With Cancer Series by Kathleen J. Robichaud won second prize, and special honorable mention was also awarded to Ms. Robichaud for an outstanding promotional effort. Teddy Wants You to Wash Your Hands; T. Bear is Specially Made for the Kids at the NCI; and Fever in the Child With Cancer is a Danger Signal.

Normal Volunteers Needed for Study

Ten healthy, medication-free normal volun­teers, ages 28-55, are needed for a National Institute of Mental Health summer-winter melatonin study. Participation involves a 3 nights, 2½ days-inpatient stay with sleep studies and IV blood drawings. The same study will be repeated in winter. Volunteers will be paid. Please call Liz Ashburn for screening on 496-6982.

New Drug Developed To Curb Kidney Stones

The development of a new orphan drug, potassium citrate, for prevention of calcium-containing kidney stones was recently an­nounced by Dr. Charles Y. C. Pak of the Uni­versity of Texas Health Science Center in Dallas during a conference sponsored jointly by the UTHSCD and the Division of Research Resources.

Potassium citrate, a component of citrus fruits, has been found effective in reducing the rate of stone formation in patients with "hypocitraturia," a condition in which a person has a low urinary citrate level.

Hypocitraturia affects about 50 percent of all people requiring medical treatment for active kidney stone disease, according to Dr. Pak, professor of internal medicine at the UTHSCD and director of the UTHSCD Gen­eral Clinical Research Center. Up to 200,000 patients could benefit from potassium citrate, he said.

Potassium citrate was tested at the Texas GCRG on 78 patients with hypocitraturia. Re­search was funded by the National Institute of Arthritis, Diabetes, and Digestive and Kid­ney Diseases. FDA approval is expected shortly.

Stones formed by patients in the study were composed of calcium oxalate or cal­cium phosphate (calcium stones make up the majority of kidney stones). Of the 78 patients, 74 percent stopped forming stones while on drug therapy and 96 percent had a reduced rate of stone formation. When treatment ended, the rate of stone formation jumped to an elevated level again.

This treatment virtually eliminated the need for surgery of new stones. The 78 patients underwent 56 surgeries during the 3 years prior to initiation of treatment. Following treat­ment with potassium citrate (mean period of 1.8 years) only nine surgeries were required, all for preexisting stones and none for new stones. In patients who initially had small stones, some had shown a reduced stone mass.

Citrato, a substance normally found in urine, is an "inhibitor" of stone formation since it can prevent crystallization of stone-forming calcium salts, Dr. Pak said.

Potassium citrate is the second drug de­veloped by Dr. Pak's group. The orphan drug "sodium cellulose phosphate" or SCP, as approved by the FDA in December 1982 after 15 years of testing by Dr. Pak's group.

SCP was found clinically effective in treat­ment of "absorptive hypercalciuria," a stone-forming disorder frequently associated with increased absorption of calcium from food.

The development of both drugs by Dr. Pak, potassium citrate and sodium cellulose phos­phate, was made possible by grants from NIADDK.

Dr. Samuel Kakehashi Receives Prestigious Dental Award

In recognition of his contributions to the Public Health Service as a clinician, scientist, administrator, and teacher, Dr. Samuel Kakehashi, chief of the National Institute of Dental Research Periodontal and Soft Tissue Diseases Research Branch, received the Jack D. Robertson Dental Award June 14.

One of the highest honors that a PHS dentist can receive, the award was established in 1982 to honor Dr. Robertson, the former Deputy Chief Dental Officer, and as a principal investigator with the Oral Medicine and Surgery Branch. From 1969 to 1974, he served as chief of the Clinical Center Dental Department. In 1974, he became chief of the Periodontal Diseases Program, NIDR Extramural Programs.

In addition to his administrative responsibili­ties, Dr. Kakehashi serves as a special lecturer at the U.S. Naval Dental School and the National Naval Medical Center and as a clinical associate professor of periodontology at the Georgetown University School of Den­tistry. He is a diplomate of the American Board of Periodontology and also maintains a practice.

Dr. Pak in his laboratory at the University of Texas Health Science Center in Dallas. His re­search on kidney stones, has led to two new treatments that were tested on patients in a DRR-supported General Clinical Research Center.

In recognition of his contributions to the Public Health Service as a clinician, scientist, administrator, and teacher, Dr. Samuel Kakehashi, chief of the National Institute of Dental Research Periodontal and Soft Tissue Diseases Research Branch, received the Jack D. Robertson Dental Award June 14.

One of the highest honors that a PHS dentist can receive, the award was established in 1982 to honor Dr. Robertson, the former Deputy Chief Dental Officer, and as a principal investigator with the Oral Medicine and Surgery Branch. From 1969 to 1974, he served as chief of the Clinical Center Dental Department. In 1974, he became chief of the Periodontal Diseases Program, NIDR Extramural Programs.

In addition to his administrative responsibili­ties, Dr. Kakehashi serves as a special lecturer at the U.S. Naval Dental School and the National Naval Medical Center and as a clinical associate professor of periodontology at the Georgetown University School of Den­tistry. He is a diplomate of the American Board of Periodontology and also maintains a practice.
Dr. E. C. Albritton Dies At 93; Retired From DRG

Dr. Errett Cyril Albritton, 93, who retired from the Division of Research Grants in 1971, died May 2 at his home in Pleasant Hill, Calif.

Dr. Albritton joined the DRG staff in 1956, after having retired from George Washington University Medical School where he was professor of physiology. Shortly before his retirement from NIH in 1971, he celebrated his 80th birthday to become DRG's first octogenarian.

Dr. Albritton received his medical degree in 1921 from Johns Hopkins University. Before becoming professor of physiology at G.W.U. Medical School, he was affiliated with three other universities—Tulane University, New Orleans; University of Buffalo; and Chulalongborn University, Bangkok, Thailand.

In 1978, Dr. Albritton, then 87 years old, returned to Thailand at the invitation of Chulalongborn University to receive the doctor of science degree in recognition of his role in developing and improving the university's medical school in the late 1920s.

Dr. Albritton was a resident of Montgomery County until he moved to California in 1980. He is survived by his wife, Dorothy, of Pleasant Hill, a son, two daughters, several grandchildren, and great-grandchildren.

Research Awards Index Available for Purchase

The 23rd edition of the Research Awards Index, containing scientific and administrative data on more than 20,000 Public Health Service research grants, contracts, and cooperative agreements awarded during Fiscal Year 1983, has been published in two volumes.

The first volume contains approximately 7,000 scientific subject headings under which appear identification numbers and titles of pertinent projects.

Volume II contains project identification data that includes names of principal investigators, their addresses and project titles; a separate section on research contracts, and an alphabetical list of principal investigators.

A limited number of this edition has been distributed without charge to Federal agencies and biomedical libraries (including the NICV Library and National Library of Medicine) by the Research Documentation Section, Statistics and Analysis Branch, DRG.

Single copies of the Research Awards Index, NIH Publication No. 84-200 (stock no. 017-040-00493-1), may be purchased for $31 domestic postpaid or $38.75 foreign postpaid from the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C. 20402.

Sits he on never so high a throne, a man still sits on his own bottom.—Montaigne

Men are most apt to believe what they least understand.—Montaigne

Two NIADDK Scientists Win Senior Arthritis Fellowships

Drs. Daniel G. Malone and Thomas J. Santoro of the Arthritis and Rheumatism Branch, NIADDK, received prestigious Arthritis Foundation Senior Fellowship Awards June 8 at the American Rheumatism Association's 48th annual meeting in Minneapolis, Minn.

The awards support individuals who have demonstrated outstanding competence in academic medicine, and who plan to pursue a program of advanced study in rheumatic diseases. Their program of study may be clinically-oriented, research-oriented, or a combination of the two.

Dr. Malone came to NIH in 1981 as a medical staff fellow after serving a rheumatology fellowship at the University of Illinois Hospitals in Chicago.

He received a B.A. degree in physics from Cornell University, Ithaca, N.Y., and an M.D. degree from the University of Illinois' Abraham Lincoln School of Medicine. He served his internship and residency in internal medicine at the University of Illinois Hospitals.

Dr. Malone has worked closely with his preceptor in the branch, Dr. Ronald L. Wilder, studying the immunopathogenesis of rheumatoid arthritis. His studies on synovial tissue (membranes covering the ends of a bone or joint) and blood cells has led to identification of specific groups of arthritis patients based on blood cell function and the number and types of specific white blood cells in the synovium.

He has also studied production of soluble factors made by white cells in the synovium. These factors regulate activity of many types of cells present in the diseased synovium.

Dr. Santoro also came to NIH as a medical staff fellow in 1981. His preceptor in the branch is Dr. Alfred D. Steinberg.

Dr. Santoro received his undergraduate degree in pharmacy from the Brooklyn College of Pharmacy, in Brooklyn, N.Y., and a B.Sc. from Columbia University. His M.D. degree was from the New York University Medical School. Internship and residence were served at Duke University Medical Center.

His principal interest has been understanding the immunology of systemic lupus erythematosus. Using a mouse model of the disease, he has examined the role of cytokines or soluble immune mediators in development of lupus. His most recent research efforts have focused on the contribution of interferon to the etiopathogenesis of murine lupus.

The Arthritis Foundation has awarded 20 of these fellowships to date. Drs. Malone and Santoro are the fifth and sixth members of the branch to receive this award.

The 100th meeting of the National Advisory Neurological and Communicative Disorders and Stroke Council brought together four past and present NINCDS directors. From left are: Dr. Edward F. MacNichol, Jr. (1968-1973); Dr. Murray Goldstein (acting director, 1981-1982; director, 1982-present); Dr. Donald B. Tower (1974-1981); and Dr. Richard L. Masland (1959-1968). Council presentations on May 24 focused on the need to train future generations of investigators, the crucial role of voluntary health agencies in fostering research, and the interaction of M.D.s and Ph.D.s in conducting clinical and basic investigations. Attending the session were council members whose collective tenure ranged from the first meeting in 1950 through the present.
Dr. G. Gilbert Ashwell Gets Biochemistry Award

Dr. G. Gilbert Ashwell, a staff member of NIADDK’s Laboratory of Biochemistry and Metabolism and its former chief, received the 1984 ASBC-Merck Award in Biochemistry June 5 in recognition of his outstanding contributions to advancement of biomedical research.

Dr. Ashwell is noted for his many fundamental contributions that have had a profound influence on the current direction of research in cell biology and biochemistry. His original studies revealed a previously unsuspected biological role for the carbohydrate portion of serum and cell surface glycoproteins. Over a period of 15 years an impressive body of data has been collected to document and define the information content of such protein-bound sugar residues.

Dr. Ashwell’s contribution is that of demonstrating that removing a molecule or two of a simple sugar from a protein molecule allows that protein to be recognized by liver cells and, consequently, ingested.

This discovery provides the basis for the understanding of those clinical conditions in which the pathology may be directly related to faulty or deficient carbohydrate signals.

NICH Grantee Receives Roussel Biochemistry Prize

Dr. Seymour Lieberman, an NICH Grantee, received the 1984 Roussel Prize during a ceremony held in Paris at the Roussel Uclaf Company on Apr. 26.

The Roussel Prize is awarded every 2 years to a chemist or biochemist for outstanding work on the chemistry or biochemistry of steroids. The recipient of the prize receives a $20,000 honorarium.

Dr. Lieberman's most recent contribution was the discovery of a new class of naturally occurring steroids, the lipoidal (fatlike) derivatives. He has identified five lipoidal derivatives so far.

FAES 1984–85 Concerts Schedule

The Foundation for Advanced Education in the Sciences will present eight concerts in its 1984-85 Chamber Music Series.

The concerts will be in Masur Auditorium, Sundays at 4 p.m. Tickets are by subscription only and cost $64 for the season.

For further information, contact the FAES, Bldg. 10, Rm. 2C207A, 496-7976.
Dr. George R. Martin

Receives Humboldt Award

Dr. George R. Martin, chief of the Laboratory of Developmental Biology and Anomalies, National Institute of Dental Research, recently received a senior U.S. Scientist Award from the Alexander von Humboldt Foundation of the Federal Republic of Germany.

Given to outstanding U.S. scientists who have received international acclaim for their accomplishments in research and teaching, purpose of the award is to promote scientific cooperation between German and American researchers and institutions.

The award will enable Dr. Martin to spend up to 12 months in the Federal Republic of Germany, conducting research of his own choice. He plans to spend that time at the Max-Planck-Institut fur Biochemie in Munich, beginning this August. His research will focus on cellular receptors for extracellular matrix molecules and their role in regulating tissue growth and repair.

Artificial Skin Promises Faster Healing, Fewer Grafts for Severe Burn Victims

Burn injury is the third leading cause of accidental death in the United States. Over 75,000 people are hospitalized with severe burns annually; 12,000 die. One-third of these burn victims are children under age 15.

To help cut this toll, speed recovery, and lessen disability and disfigurement, the National Institute of General Medical Sciences supports research which aims to improve our understanding of the fundamental physiological mechanisms underlying the complications of burn injury.

Although NIGMS is especially interested in basic studies on the molecular, biochemical, and physiological changes caused by burns and trauma, research results are often translated into improved patient care quite quickly.

A case in point is the development of an artificial skin by two NIGMS grantees, Dr. Ioannis Yannas of the Massachusetts Institute of Technology in Cambridge and Dr. John Burke of Massachusetts General Hospital in Boston.

Rapid wound closure is very important for burn and trauma victims since open wounds lead to serious fluid losses and greatly increase the risk of life-threatening infections. At present, wounds in which extensive areas of skin have been destroyed cannot be closed without the use of grafts.

The only grafts that “take” permanently are from the patient’s own skin and, unfortunately, this may be in short supply. When this happens temporary coverings, often grafts of pig or cadaver skin, are used to cover the wound. To slow the rejection which ultimately occurs with these grafts, immunosuppressant drugs must be given.

These, in turn, lower the patient’s resistance to infection. The temporary grafts must also be removed when the permanent graft is applied, thus subjecting the patient to another surgical procedure.

The artificial skin promises to avoid many of these problems. Drs. Burke and Yannas have successfully tested the material on 40 severely burned patients ranging from the very young to the elderly. They found the skin, which is composed of interlaced fibers constructed from cowhide collagen (a major protein of connective tissue) and shark cartilage, to be a good wound covering.

It does not cause infection, inflammation, or rejection, and it cuts healing time significantly because, although the top layer must be removed and the wound closed by thin mesh grafts of the patient’s own skin, it is not necessary to obtain full-thickness grafts from the patient.

This “stage 1” artificial skin is now being developed by a commercial laboratory and has received FDA approval to be tested in selected burn centers across the country. Within the next year or so, the material should become available for widespread use in treating severely burned patients.

In both stages the artificial skin consists of two layers. The top layer is made of silicone, which can be peeled off quite easily. The bottom layer is constructed of highly porous fibers of collagen that are specially designed to serve as a template for the regrowth of the patient’s dermal or inner skin layer.

Co-Editors of NIEHS Journal Honored for Dedicated Service

Drs. George W. Lucier and Gary E. R. Hook, coeditors of Environmental Health Perspectives, the scientific journal published by the National Institute of Environmental Health Sciences in Research Triangle Park, N.C., were recently honored at a meeting of the publication’s Editorial Board and Editorial Review Board.

The coeditors, who have served since the journal’s experimental issues in the early 1970s, were honored for years of work over and above their duties as research scientists at NIEHS. The journal is internationally recognized as a prime reference in the field of environmental health.

When not performing editorial duties, Dr. Lucier is chief of the NIEHS Biometry and Risk Assessment Program. Dr. Hook is group leader in the Biochemical Pathology in the NIEHS Laboratory of Pulmonary Function and Toxicology.
NIH Committee Recommends Approval of Two Experiments With Genetically Modified Organisms Being Released

The NIH Recombinant DNA Advisory Committee at a recent meeting unanimously recommended approval of two proposals from biotechnology companies to conduct experiments that would release certain genetically modified organisms into the environment in strictly controlled field tests.

One experiment—proposed by Advanced Genetic Sciences—involves spraying small fields with bacteria that have been genetically modified in an attempt to reduce frost damage to potato plants. The other experiment—proposed by Cetus Madison Corporation—would involve a small field test of plants that had been genetically altered to make them more resistant to disease.

The proposal from Advanced Genetic Sciences is similar to a proposal by scientists from the University of California which was approved by the RAC earlier but which has been halted recently by court action.

The NIH Guidelines stipulate that any release of plants into the environment would involve the use of gene-splicing techniques first be approved by NIH. These guidelines apply only to institutions receiving Federal research funding. Commercial companies are not bound by the guidelines, but most of them have volunteered to abide by the NIH Guidelines.

In another action, the RAC approved proposed laboratory experiments by scientists at the Uniformed Services University of the Health Sciences in Bethesda to grow the laboratory genetic material with which bacteria make a poison, shiga toxin.

The experiments would be conducted in a laboratory classed as P-3, with strict and relatively elaborate safety precautions.

The drug cisplatin has turned around the statistics for several types of cancers that were once uniformly deadly. Testicular cancer, which strikes 6,000 young men in the United States alone every year, used to kill virtually all with the advanced disease. Today, however, more than 80 percent of patients with advanced testicular cancer are cured with drug treatments that include cisplatin.

The origin of awards

Ported that a related virus, HTLV-3, is probably responsible for AIDS, a deadly disease that has afflicted some 4,000 Americans.

Dr. Gallo has recently shown that HTLV-1 is prevalent in several parts of the world, among them the Caribbean, Central and South America, parts of Africa and the southeastern United States. It has long been known to exist in southwestern Japan.

HTLV-1 does not appear to be highly infectious.

Drs. Bishop and Varmus share the $130,000 Alfred P. Sloan Prize for their oncogene work, which has important implications for cancer cause and prevention. Their studies suggest that, though cancer is more than 100 different diseases, there may be common mechanisms by which they proliferate.

Drs. Bishop and Varmus, who often collaborate, identified the first of a small number of genes that switch on cancer. Under normal conditions, these genes perform functions necessary to life. But once disturbed, perhaps by radiation, a chemical or a cancer-causing virus, they start the long process toward cancer.

Dr. Rosenberg was awarded the $130,000 Charles F. Kettering Prize for his discovery and development of cisplatin, now one of the most widely used anticancer drugs in the world. Cisplatin turns around the statistics for several types of cancers that were once uniformly deadly. Testicular cancer, which strikes 6,000 young men in the United States alone every year, used to kill virtually all with the advanced disease. Today, however, more than 80 percent of patients with advanced testicular cancer are cured with drug treatments that include cisplatin.

The drug is also the mainstay of present-day chemotherapy for several other aggressive solid tumors, such as those affecting the ovaries, bladder, head and neck, and cervix.

Origin of Awards

The G.M. Cancer Research Awards, which began in 1979, are given “to stimulate scientific efforts to control this disease and to recognize the truly important recent advances made in the cancer field.”

The General Motors Cancer Research Foundation was formed with a $2 million grant from General Motors to meet the need for recognition of cancer research. Subsequent grants have brought G.M.’s total contribution to $7.5 million.

The Foundation established three awards, each consisting of a gold medal and $100,000 in cash, to recognize accomplishments of scientists around the world in basic and clinical cancer research, with the hope of stimulating further efforts to control the disease.

Each award includes an additional $30,000 to support a workshop or conference under the leadership of the prizewinner.

The 1984 Awards Assembly, who made the final prize selections, is composed of distinguished medical and scientific leaders from the United States, England, France, Scotland, Japan, Peoples Republic of China, Italy, Argentina, Sweden and Australia. Several are Nobel laureates.

GM WINNERS

(Continued from Page 1)

EXERCISE

(Continued from Page 1)

made it difficult to test many popularized assumptions about stress-induced hypertension.

The Tennessee team has been able to successfully study stress-induced hypertension in a strain of animals derived from the spontaneously hypertensive rat, a breed of animals that reliably develops high blood pressure without outside intervention.

Two groups of these animals were exposed to 2 hours of predictable tail shock daily, 5 days a week, for 12 weeks, an experimental paradigm that produces stress.

One of these groups also exercised for 2 hours daily through swimming. (These animals are naturally good swimmers.)

Each week, a minimum of 24 hours after the last shock or swim session, measurements of systolic blood pressure were made for each rat. (Systolic pressure is the blood pressure created by the contraction of the ventricles as they force the blood out of the heart. In blood pressure notation, systolic pressure is the larger of the two numbers and is placed on the top.)

The investigators found that tail shock stress does indeed elevate systolic blood pressure. But in exercise animals, that elevation is much smaller than the blood pressure rise in sedentary rats.

In looking for a basis for the exercise effect, the Tennessee researchers measured blood levels of two known blood pressure-elevating chemicals (epinephrine and norepinephrine) in the rats after a 30 minute session of predictable shock. They found that norepinephrine levels were lower in swimming rats than in their sedentary counterparts.

The reason for this difference, the investigators suggested, was that exercise training suppressed the activity of the sympathetic nervous system, that part of the nervous system relying on norepinephrine for the transmission of nerve impulses.

The Tennessee study provides the first demonstration that exercise training can attenuate one of the deleterious effects of stress—an elevation in resting blood pressure. And while further research is needed, the study also suggests that people who exercise regularly may be better able than sedentary individuals to withstand the hypertensive effects of stress—FASEB Report.

SHER Sponsors Speakers

Jerry Klepner, staff director of the subcommittee on Compensation and Employee Benefits, and Sandy Fiske, general counsel for the Federal Government Service Task Force, will speak on current issues having significant impact on NIH employees. All NIH employees are invited to hear these speakers from noon to 1 p.m. June 25 at the ACRF Amphitheater in Bldg. 10.

Some of the issues to be discussed include: Contracting Out, Women’s Pay Equity, Merit Pay and the plan to eliminate 40,000 middle and upper grades over the next 4 years. This meeting is sponsored by Self-Help for Equal Rights.

For further information, call Ethel Munjian, 496-9231.
Dr. James R. Ganaway, Distinguished Veterinary Scientist, Retires From NIH After 33 Years of Federal Service

Dr. James R. Ganaway, NIH’s principal expert on naturally occurring infectious diseases of laboratory animals, retired May 31 after 33 years of Federal service. Dr. Ganaway had served since 1961 as chief of the Microbiology Unit, Comparative Pathology Section, Veterinary Resources Branch, DRS. He is a veterinary director in the PHS Commissioned Corps.

In the Veterinary Resources Branch, Dr. Ganaway conducted investigations of spontaneous diseases of NIH laboratory animals and managed VRB’s program to ensure the microbiologic quality of the animals used in intramural research. Defects in laboratory animals can invalidate research results.

Dr. Ganaway received his D.V.M. from the University of Missouri in 1953; he had served in the U.S. Army 1944–1947. He began veterinary and public health practice as a commissioned officer in the Air Force, 1953–1961, and during that period he earned the M.P.H. degree in 1958 at the Johns Hopkins School of Hygiene and Public Health. He then began his career in diagnostic and research laboratory work at the Armed Forces Institute of Pathology. He joined NIH in 1961.

Ganaway’s many contributions to research on infectious diseases of laboratory animals have established him as an international authority in that field. In 1983 he performed the first demonstration of disease in a warm-blooded vertebrate resulting from infection by a “gliding bacterium.” He isolated and propagated this filamentous bacterium of the rat respiratory tract and used it to transmit obstructive pulmonary disease in rats; he has termed the organism the “cilia-associated respiratory (CAR) bacillus.”

Many past studies in rats may have to be reevaluated as a result of these findings. Dr. Ganaway has also developed sensitive serologic techniques and initiated surveys for antibody to CAR bacillus in numerous animal species, including humans. He is best known for advances in the study of Tyzzer’s disease, one of the most feared threats to laboratory animal colonies. Often fated in 3 to 4 days, it is widespread in mouse colonies in several countries. Occasional outbreaks occur in the United States among various animal species. Dr. Ganaway was a member of the VRB team that identified Tyzzer’s disease in animals other than mice, and he was the first person to isolate the causative agent, *Bacillus piliformis*, from the rabbit and horse.

Dr. Ganaway characterized this elusive bacterium extensively and proved the existence of a spore form; he was the first person to successfully propagate the bacillus in tissue culture and has developed an enzyme-linked immunosorbent assay for detection of antibody.

His first major contribution in his field came in 1962 when he determined the cause of a disease threatening the survival of the NIH Strain 13 guinea pig colony—valuable animals in which inbreeding was begun near the turn of the century. Dr. Ganaway pinpointed a nutritional imbalance involving vitamin D and magnesium; diet changes saved the last few
New Interagency Animal Research Committee Serves Expanded Role on Animal Issues

Representatives of the principal Federal agencies dependent on the use of animals for research and testing now participate in the Interagency Research Animal Committee (IRAC).

Established in 1983 by Dr. Edward N. Brandt, Jr., Assistant Secretary for Health, IRAC is the focal point for interagency discussion of issues involving animal species needed for biomedical research and testing.

Its principal concerns are the conservation, supply, use, care, and welfare of these animals, and its responsibilities include information exchange, program coordination, and contributions to policy development.

NIH has been designated the lead agency, and Dr. Joe R. Held, Director of the Division of Research Services and Chief Veterinary Officer of the Public Health Service, chairs the committee.

IRAC replaces the Interagency Primate Steering Committee (IPSC), which functioned since 1975 as the focus of Federal efforts to ensure a stable supply of nonhuman primates for biomedical research. That responsibility will remain part of the new committee's mission.

At the request of the Office of Science and Technology Policy (OSTP), IRAC recently drafted "U.S. Government Principles for the Utilization and Care of Vertebrate Animals Used in Testing, Research, and Training." These are now under review by individual Federal agencies.

The final version will be considered for inclusion in the proposed revision of the PHS Policy for Humane Care and Use of Animals and as an appendix to the revised NIH Guide for the Care and Use of Laboratory Animals now being prepared.

IRAC has based its statement on a draft statement of principles prepared by the Council for International Organizations of Medical Science (CIOMS), whose membership represents a large majority of the world biomedical scientific community.

"Specific practices will necessarily vary in countries with different legal and social systems," Dr. Held said, "but consensus on broad, underlying principles can contribute much to progress in research involving animals."

A potential sharp drop in the availability of cynomolgus monkeys for biomedical research is a current concern of IRAC. This macaque species has been widely used in research since rhesus monkeys (also macaques) became unavailable from the wild during the 1970s. Now Malaysia, one of the principal source countries, has announced an end to export of cynomolgus and the related "pig-tailed" macaque monkeys.

IRAC has been assisting the World Health Organization with a program designed to count potentially available primate populations and to stimulate conservation and management of these animals and their natural habitats.

Participating agencies in IRAC are the Departments of Health and Human Services, Agriculture, Defense, State, and Interior; the Environmental Protection Agency; National Aeronautics and Space Administration; National Science Foundation; and Veterans Administration.

PHS components in addition to NIH are the Alcohol, Drug Abuse, and Mental Health Administration; Centers for Disease Control; Food and Drug Administration; and Office of International Health.

Within NIH, components represented are the Division of Research Resources; Division of Research Services; Fogarty International Center; Office of Program Planning and Evaluation; and Office of Protection from Research Risks.

The Veterinary Resources Branch, DRS, provides staff support for IRAC, including Dr. Thomas Wolfe, who serves as executive director. For additional information, call the IRAC office, 496-5424.

NIEHS's Dr. Dixon Named To Head EPA Laboratory

Dr. Robert L. Dixon, chief of the Laboratory of Reproductive and Developmental Toxicology at the National Institute of Environmental Health Sciences, has been named to head the Office of Health Research at the U.S. Environmental Protection Agency headquartered in Washington, D.C.

In this new post, he will have administrative responsibility for the health research programs of EPA conducted at the EPA Health Effects Research Laboratory at Research Triangle Park, N.C., which is a neighbor to NIEHS.

During his 12 years at NIEHS, Dr. Dixon established the Laboratory of Reproductive and Developmental Toxicology which is recognized internationally.

To marry a second time represents the triumph of hope over experience.—Dr. Sam Johnson