APPLYING THE CORNERSTONE MORTAR

In a ceremony witnessed by more than 3,000 persons at NIH, President Truman applies the first trowel of mortar to the Clinical Center cornerstone. Shown here with the President (left to right) are NIH Director Sebrell, FSA Administrator Ewing, Surgeon General Schaeble, and Contractor John McShain.

TETANUS SHOTS, BLOOD TYPING BEGIN AT NIH

A tetanus immunization and blood typing program for all NIH employees was scheduled to get under way early this month, with staff members at NMI the first to participate in the project.

Announcement of the program was made recently by Dr. William H. Sebrell, Jr., Director of NIH, who urged all employees to take advantage of the benefits offered by the preventive health measures. Participation is voluntary.

Dr. Sebrell stressed the importance of blood typing as a civil defense preparedness project. He also pointed out the protection supplied all employees by tetanus immunization, particularly those likely to receive cuts or scratches in the course of their duties.

The program will be carried out jointly by the Employee Health Service and the Laboratory of Biologies Control, NMI. Dr. John T. Lynch of the health unit said that staff members will be notified by the administrative office of their Institute or Branch when a date has been scheduled for their unit.

Seger Gets NCI Post

Dr. Gordon H. Seger, Project Review Officer in the Division of Research Grants, has been appointed Executive Officer of NCI.

Dr. Seger entered PHS in 1940, serving with the Bureau of State Services until 1946, when he joined NIH. He received his B.S. degree from Northern College of Education, Marquette, Mich., and his M.A. and Doctor of Public Health from University of Michigan.

BLOOD PRODUCT FOUND CAUSING SERUM HEPATITIS

To safeguard the public against serum hepatitis, NMI's Biologies Control Laboratory has recalled all thrombin made from human blood from hospitals, drug distributors, and private physicians.

Thrombin, a natural blood-clotting substance in blood, is used to check bleeding during surgery, particularly brain operations.

Thrombin made from human blood has been responsible for transmitting the virus that causes serum hepatitis, a type of jaundice. Thrombin made from beef blood is safe and has not been recalled.

During the past year, 14 cases of serum hepatitis occurred in Portland, Maine. In all of these cases, thrombin made from human blood had been used in brain surgery.

Discovery of the common factor responsible for the sickness was made by the pathologist who conducted blood tests on the affected patients.

In recent months, PHS officials have reported a dozen similar cases originating in two Boston hospitals. The Portland and Boston cases are the first in which thrombin has been definitely linked to serum hepatitis, although other cases may have occurred without anyone noting the connection. After the virus enters the body, it takes from two to four months for serum hepatitis to develop.

Other cases of serum hepatitis in the last several years have been caused by blood and plasma transfusions. The Biologies Control Laboratory now requires that plasma be sterilized by ultraviolet rays, a measure regarded effective in killing the virus.

During the past month, 14 cases of serum hepatitis occurred in Portland, Maine. In all of these cases, thrombin made from human blood had been used in brain surgery.

Discovery of the common factor responsible for the sickness was made by the pathologist who conducted blood tests on the affected patients.

In recent months, PHS officials have reported a dozen similar cases originating in two Boston hospitals. The Portland and Boston cases are the first in which thrombin has been definitely linked to serum hepatitis, although other cases may have occurred without anyone noting the connection. After the virus enters the body, it takes from two to four months for serum hepatitis to develop.

Other cases of serum hepatitis in the last several years have been caused by blood and plasma transfusions. The Biologies Control Laboratory now requires that plasma be sterilized by ultraviolet rays, a measure regarded effective in killing the virus.
Studies in Diagnostic Methods
No. 51 of a Series

Parasitologist John Bozicevich examines antigen prepared for rapid floculation test developed at NMI.

Visitors who toured Bldg. 5 when NIH presented its Open House Program had an opportunity to witness performance of a new, diagnostic test for trichinosis, the causative agents of which has been found in 16 percent of persons examined at autopsy in this country. The disease is caused by eating undercooked pork infected with the trichina organism.

Preliminary studies indicate that the floculation test may have potential value in the diagnosis of tularemia, brucellosis, and certain parasitic diseases besides trichinosis.

The test, so simple it can be performed in 15 minutes, is the work of Medical Parasitologist John Bozicevich, Head of the Subsection on Clinical Immunology in NMI's Laboratory of Tropical Diseases. It was developed in collaboration with Dr. John E. Tobie and with the assistance of Elizabeth H. Thomas, Helen M. Hoyem, and Stanley B. Ward.

To perform the test, blood serum from an individual suspected of harboring the trichina organism is deposited on a glass slide within a wax ring. To this is added a special preparation of the causative organism, or antigen. The droplets are then rotated by an agitating machine for 15 minutes and examined under a microscope.

If the test shows positive, the suspended particles will be seen clumped together on the glass slide. If no infection is present, the blood serum will show little or no clumping.

Success in developing the floculation test depended largely upon devising methods to make a stable antigen. In this case, the answer was found in utilizing bentonite, a fine clay, as the colloidal substance.

The antigen is prepared from larval worms recovered from infected rats and ground in a tissue grinder. This extract is adsorbed on the minute bentonite particles, coating them completely.

Once this antigen becomes available commercially, it is believed the test can be widely used by all diagnostic laboratories, large and small alike.

The complement fixation test heretofore used in diagnosing trichinosis has been a time-consuming process requiring highly trained laboratory personnel. Tests have been difficult to perform and interpret, as well as relatively expensive because of the cost of laboratory materials.

Thus far, the floculation test has proved to be just as accurate as the complement fixation method.
OUR OPEN HOUSE VISITORS FIND RESEARCH ENGROSSING

Priscilla Maury, NIH staff visitor, listens intently as Dr. Koloman Laki discusses muscle contraction studies at NIAMD.

Small fry inspect rat cavities at NIDR. They're thinking of the king-size toothaches rats acquired from sugar-heavy diet.

Visibly impressed by scientific apparatus, this youngster ponders movie camera used for studying various cell functions.

Jay C. Bryant explains to visitors how tissue is cultured in carrel flasks at Cancer Institute.

Dr. Dale C. Cameron, PHS, and family examine polarized light apparatus used to detect strains in glassware.

Arthur F. Robbins, Laboratory Aids Branch, demonstrates glass-blowing technique.

NIH Record Vol. III, No. 14 - 9 July 1951
SOME VIEWS OF CORNERSTONE CEREMONY AND DYER LECTURE

President gives photographers a break just before he scoops up trowel of mortar.

Taken from atop the hill opposite the Clinical Center, this shot shows the crowd assembled for cornerstone ceremony.

President and party relax for a moment in interlude before principal address goes on air. Shown in center are Dr. Scheele (left) and Dr. Bronk, President of Johns Hopkins.

Dr. Sebrell delivers address of welcome before crowd estimated at some 3,000.

Press photographers crowd forward as President Truman prepares to lay cornerstone.

Dr. Dyer (center) congratulates Dr. George W. Beadle, recipient of the R. E. Dyer Lectureship. Looking on is Dr. James S. Simmons, Dean of Harvard University School of Public Health.