CC BLOOD BANK OPERATED BY NMI

The Clinical Center Blood Bank, operated by the Laboratory of Biologics Control of NMI, has been in full-scale operation since the opening of the Clinical Center. To date, the bank has supplied over 100 bottles of blood for patients, and the demand is growing apace as new patients are admitted.

The blood bank is located temporarily on the fifth floor of the Clinical Center, utilizing a nursing station and some patient rooms. Dr. Hugh Chaplin, Jr., is the physician in charge of the bank, assisted by Mrs. Wanda S. Chappell, nurse; Miss Estelle Chang, technologist; and Mrs. Nell Spruce, secretary.

The bank will not move into its permanent quarters in the first basement of Building 10 until spring.

Donors will not be paid for their blood. They will, however, be contributing directly to the welfare of the Clinical Center patients, and helping to meet the total blood needs of the community.

The blood bank hopes to have available a list of some 1,500 prospective donors on whom it can call when there is a need for a specific type of blood. The Montgomery County Chapter of the American National Red Cross, under the leadership of Mrs. Edward Virgin, Donor Recruitment Chairman, has accepted the responsibility for this aspect of the operation. When the Washington Regional Blood Center Bloodmobile visited the National Institutes of Health on September 21, the Montgomery County Chapter presented the cooperative plan to all NIH donors, and over one hundred of them added their names to the donor list. In addition, the Chapter has already recruited donors from the surrounding community.

DR. LOUIS K. DIAMOND TO GIVE NMI LECTURE

Dr. Louis K. Diamond, well-known authority on hematology, will deliver the NMI Lecture at 8:30 p.m., December 17, in Wilson Hall. All NIH scientists are invited to attend. Dr. Diamond will discuss "New Blood Group Antigens and Antibodies: Their Impact on Clinical Medicine."

Dr. Diamond is perhaps best known for his work with exchange transfusion in erythroblastosis foetalis. At present, he is Associate Professor of Pediatrics at Harvard Medical School, and Director of the Blood Grouping Laboratory and Hematology Center of the Children's Medical Center in Boston. From 1948 to 1950, he was Medical Director of the Blood Program of the American Red Cross.

NATIONAL ARTHRITIS CONFERENCE AT NIH

NIH played host November 19 to about 150 of the country's leading experts on arthritis and other rheumatic diseases who attended a National Conference on Research and Education in the Rheumatic Diseases, at the Clinical Center.

The meeting, the first of its kind in the field of rheumatic diseases, was sponsored jointly by the American Rheumatism Association, the Arthritis and Rheumatism Foundation, and NIAMD.

Three panel groups considered: (1) promising areas for exploration and research in rheumatic diseases, (2) research and educational activities in rheumatic diseases in the United States—present and potential, and (3) medical education in rheumatic diseases.
Recent Research in Amebiasis
No. 107 in a Series

Preliminary studies on the liver of guinea pigs indicate that amebic dysentery may involve other organs in addition to the intestinal tract. These studies in NMI's Laboratory of Tropical Diseases were conducted cooperatively by Dr. Charles W. Rees and Lucy V. Reardon of the Section on Protozoal Diseases, and D. Jane Taylor of the Section on Chemotherapy.

Amebic dysentery is a form of amebiasis, a disease caused by a protozoal organism, Endamoeba histolytica, that attacks the intestines. The parasite is believed to infect about a million and a half people in the United States, and was an important cause of disability in World War II for servicemen fighting under unsanitary conditions in the Pacific and Far East.

The experiments at NMI were undertaken to determine the extent to which Endamoeba histolytica is capable of migrating from the intestinal tract to the liver and whether liver infections can be detected by cultural methods. For this purpose, guinea pigs given the parasite intracecally were used. To detect the parasite, slices of liver from infected animals were inoculated into the culture medium. These cultures were examined for periods up to 144 hours for evidence of the presence and multiplication of the organism.

The livers of 15 of the 20 guinea pigs used in the tests were found to be infected with the disease-producing organism. The earliest positive finding was 7 days following inoculation. The relation between severity of intestinal lesions and positive findings in liver tissue could not be determined from the experiments to date. However, the study did disclose the interesting fact that in the positive guinea pigs, several cases were found in which the left lobe of the liver was invaded, with absence of infection in the right lobe. In the guinea pigs in this series, the percentage of left lobe infections was much higher than that reported for amebic abscesses in the human subject.

The experiments indicate that the causative agent of amebiasis migrates from the intestinal tract to the liver with considerable regularity in the infected guinea pig and that the liver infection can be diagnosed by cultural methods.
FIRE PREVENTION IN LABORATORIES

Do you remember reading about the fire at NIH in the newspapers this fall? A wooden worktable caught fire from either a water bath under the table or a fraction collector operating on the table. After smoldering for a considerable length of time, the table collapsed. Two large gas cylinders tied to the table fell with a crash, alerting a nearby occupant who called the guard force. Fortunately the fire was extinguished before it could ignite the surrounding chemicals or discharge any of the compressed gas cylinders. Irreplaceable experimental data was safe because it had been confined in a metal desk. Because of the hazardous nature of laboratory operations, the danger of fire is ever present at NIH. Observation of the following rules will help to prevent and control fires in the lab.

1. Shut room doors at the close of the workday. This will provide a temporary barrier against the spread of fire, toxic gas, and smoke.
2. If possible, place electrical apparatus to be operated overnight on noncombustible benches. Where there is danger of overheating, protect wood surface tops with transite. Before you leave the building in the evening, be sure the equipment is functioning properly and that surfaces, wiring, etc., are not becoming unusually hot.
3. Place all experimental equipment to be kept operating after you leave. Include your name, telephone number, and the appropriate emergency instructions. Do not run equipment overnight just to save an extra 15 minutes in the morning.
4. Keep stocks of flammable solvents at a minimum. Chemicals that react explosively with water should be kept in metal containers and stored in cabinets, so that they will not be exposed to water from a fire hose.
5. Compressed gas cylinders that are not currently in use should be stored in the Gas Cylinder Storage shed located south of Building 8.
6. The Building's Management Branch must approve the purchase or use of electrical equipment in excess of 1,000 watts and/or with a rating of more than 120 volts (single phase and 60 cycles). Do not extend the receptacle circuit in your laboratory by the use of multiple cube taps or extension strips. Contact the Electric Shop if your receptacle circuit is inadequate.

In August 1952, Irene came to NIH from Johns Hopkins University Department of Medicine, where she did similar work. After two years in the research department of the Crown Cork and Seal Company in Baltimore, following her graduation from college, Irene decided to make medical research her chosen field. This fall she enrolled at Georgetown University to pursue graduate work in biochemistry leading to a Master's degree.

Irene was born in New York and lived in Philadelphia for several years. Later her family moved to Baltimore. She attended high school in Catonsville, Md., before entering the College of Notre Dame of Maryland, where she majored in chemistry.

Irene likes all sports, especially golf, which she tries to play as frequently as her work-school schedule will permit. She is also interested in photography.

During August, Irene joined her parents for a three-weeks plane trip to Munich, Germany, to visit her grandmother. It was her first opportunity to meet her relatives there, and was the first time in 31 years that her parents had returned to their native land. Irene fell in love with the beautiful mountains and forests of the Bavarian area. She also visited Switzerland and spent a day each in Paris and London before returning to Bethesda.
STATISTICAL PROCESSING SECTION SOLVES NIH’S ACCOUNTING PROBLEMS

Visitors to the Statistical Processing Section’s Open House last month saw an interesting collection of punchcard and tabulating equipment, which is currently solving a variety of accounting and statistical problems for NIH. In addition to making statistical reports for surveys conducted by the various Institutes, the Section processes the NIH payrolls, budget, employee records, stock control, and inventories. Future plans for the Section include making up the NIH telephone directory, and processing employee records on time and attendance.

The punchcard method, which involves transcribing data on punchcards, arranging them into a predetermined sequence, and tabulating the results, can provide a wide variety of accounting and statistical records from one set of cards. The high-speed electric and electronic machines that process the cards can punch, file, crossfile, check for errors, print, count, duplicate punch, calculate, and print the results.

When a project is first considered for punchcard application, the scientist or project supervisor consults with the Section, where the report is briefed, the punchcard designed, and the procedures planned. The material is then sent to the key punch operators, who transcribe the data (both numerical and alphabetical) on the punchcard. Errors are detected by running the cards through the key verifying machine. The sorting machine then arranges the cards in the desired order, at the rate of 650 per minute. For the final report, the cards are run through the accounting machine, which reads the punches, prints the information on the cards, tabulates specified items, and prints the totals.

Other machines that might be used in the tabulating process include the electronic statistical machine, the calculating punch, the collator, the electric document originating machine, the card interpreter, and the reproducing punch machine. The machines are rented from and maintained by the International Business Machines Corporation.

The Section, which is under the supervision of Mr. Charles E. Greene and Dr. Harold F. Dorn, Chief of the Office of Biometry, is a part of NIH Central Services. The 13 employees and 20 IBM machines that comprise the Section are located in Building 12.

NIH LIBRARY MOVES

NIH employees returning from their Thanksgiving holiday were surprised to see the Library already established in its new quarters on the fifth floor of the Clinical Center. This was the result of a week-long move, purposely scheduled during a slack period.

The move itself presented several novel features. Suggestions that the Library use NIH personnel to organize a human chain, or that the Library use conventional PBS moving boxes, were discarded in favor of a move on wheels. This method assured a minimum interference with shelf order and substantially reduced the amount of lifting.

The Library borrowed book trucks from the Library of Congress, the Armed Forces Medical Library, and the Department of Health, Education, and Welfare. Using four numbered fleets of nine book trucks each, loading crews shifted books from the shelves to book trucks. Rubber straps sliced from automobile inner tubes were used to hold the books in position during transit. All books were cleaned on the freight platform of Building 1 with a compressed air hose before they were taken to the Clinical Center. Here an unloading crew took the books in order from the book trucks and transferred them to their pre-assigned locations.

The Library is now in business again, and welcomes visits from NIH personnel. The next issue of the Record will carry a description of the new Library facilities.

CONFERENCE Cont’d

Floyd B. Odum, well-known industrialist and financier, was chairman of the conference. A member of the National Advisory Arthritis and Metabolic Diseases Council, he is also chairman of the Arthritis and Rheumatism Foundation.

Lost and Found

A letter dated November 5, 1953, from Dr. Claude-Starr Wright addressed to "Bill" was found in the first floor hall of Building T-6. The owner can get the letter from Mrs. Jane Knapp, Room 1009, T-6, ext. 2625.

NEW COUNCIL MEMBER

Frank A. Robbins, Jr., of Harrisburg, Pa., has been appointed by the Surgeon General to serve on the National Advisory Arthritis and Metabolic Diseases Council. A retired Bethlehem Steel executive, Mr. Robbins has long been interested in the medical and welfare fields in Pennsylvania. For many years he has been the ranking lay officer of the Harrisburg Hospital and a member of the American Public Welfare Association.

CHRISTMAS MAILING

FOR YOUR CONVENIENCE... Christmas packages can be mailed from the Mail Room in the basement of Building 1 from 11 a.m. to 2 p.m. (Personal mail cannot be registered or insured.)

FOR OUR MUTUAL BENEFIT, please...Do not send greeting cards or packages to your friends at their NIH location. Use the home address. Do not use the messenger service for exchange of holiday greetings. Do not send bulk mailings of pamphlets, forms, etc., which can be withheld until after Christmas.

BLOOD BANK Cont’d

If you are willing to have your name placed on the list to be called when your type of blood is needed, call Mrs. Spruce on ext. 2248.