Dental Room Is Designed for Patient's Comfort, Assurance

PATIENT'S EYE VIEW from the dentist's chair. In the new experimental dental room here, the dentist's fearsome instruments (right) are out of sight behind the patient, who sees only the dentist and his assistant with a minimum of innocuous equipment (left).—Photos by Jerry Hecht.

By Julian Morris

NIH Information Trainee

Comfort of both patient and dentist is an important feature of the experimental dental operating room installed in the Clinical Center recently. The room has been designed with equipment that allows the dentist and his assistant to operate in a seated position while the patient relaxes in a reclining chair. This arrangement will enable the staff to treat more patients in a day and to complete more procedures per visit for each patient because of more efficient performance.

All instruments in the new room are located behind the patient's chair and are within arm's reach. Dr. James O. Blythe, Chief of the Clinical Center Dental Department, explains that "the maze of instruments, devices, belts, and tubes that dangle before the already apprehensive patient tends to bewilder him more." It is therefore considered advantageous to place these instruments behind the patient and out of his view.

Equipment Described

The Clinical Center's new equipment is particularly effective for work in restorative dentistry. The patient's chair reclines to a near horizontal position to allow the dentist and his assistant better access to the mouth and may help to put the patient more at ease.

Dr. Blythe points out that the design of any dental office should be dictated by the type of dental practice, the condition of patients, and the number of patients to be treated.

A school clinic, for instance, may be designed differently from a hospital clinic. Similarly, the room of an oral surgeon would be entirely different.

NIH Ham Radio Club Assists PHS by Alaska Communication Following Quake

The value of the NIH Radio Amateur Club as a means of communication in an emergency or natural disaster was demonstrated following the devastating earthquake centered in the area around Anchorage, Alaska, on Good Friday, March 27.

The abruptness of the disaster resulted in a complete tie-up of all regular communication channels and circuits to Alaska. The Public Health Service was unable to make contact with its hospital in Anchorage or any of the three native hospitals it supervises in Alaska.

The Division of Indian Health, Bureau of Medical Services, called Richard L. Seggel, NIH Executive Officer, about noontime on Saturday, March 28. Mr. Seggel then phoned George P. Morse, Chief of the Plant Safety Branch.

PHS urgently needed to know

(1) the extent of any damage to the hospitals, (2) whether any injuries had been suffered by PHS hospital personnel, and (3) whether emergency supplies and equipment were necessary.

Although it was a non-working day, Mr. Morse was able to alert club officers, Nate Coffey and Dr. Jack Dalton, and Dr. Karl Frank, a club member.

By 2:30 that afternoon monitoring operations here were underway. Within hours the club succeeded in contacting an Alaskan station and

(See DENTAL ROOM, Page 7)
Pauline Utz, Gray Lady for 25 Years, ‘Woudn’t Miss Friday for Anything’

“I wouldn’t miss Friday for anything!” That’s how Mrs. Pauline Utz, a member of the Red Cross Gray Service team, feels about the day she spends each week at the Clinical Center.

Mrs. Utz is marking her 25th year as an American Red Cross volunteer, and 10 of the 25 have been spent at the Clinical Center. She and 25 others make up the Gray Service specialty, the class of volunteer workers who work with patients who must remain in their rooms or within the unit.

Often she will teach patients how to weave on portable hand looms that she brings to the bedside. Sometimes she brings materials and helps the patients make jewelry, leather items, tiles, mosaics, and other craft projects.

Mrs. Utz likes to come on Friday so she can make sure the patients have enough materials to work with over the weekend.

“I started as a Red Cross volunteer in 1939,” she recalls, “at the old Naval Hospital downtown.” When the Bethesda Naval Hospital opened in 1941 she transferred there.

Train with ARC

During the war, in addition to the two days she worked at the Naval Hospital, Mrs. Utz trained with the arts and crafts corps of the Red Cross at Walter Reed Army Hospital two days a week. When Suburban Hospital started its volunteer corps after the war, Mrs. Utz and several others went there to help train a new group of Gray Ladies.

“We did the same when the Clinical Center was ready to start its volunteer program in 1955,” she explained.

As a matter of fact, Mrs. Utz helped to train the Center’s first volunteer class, and it was she who set up the large looms that are still in the occupational therapy section today.

“I liked it here so much then,” she says, “that I’ve stayed ever since.”

Mrs. Utz began volunteer work in 1939, establishing that two of the native hospitals were not located in the stricken area, that damage had been lighter than expected, and that no casualties were reported among PHS hospital personnel.

By 8:30 that evening sufficient reassuring information had been obtained and relayed to PHS to permit discontinuance of monitoring operations.

However, Dr. Frank, continuing the vigil at his home Easter Sunday, established direct contact with Elmendorf Air Force Base which relayed a message from the PHS in Anchorage confirming previous information, and advising that Elmendorf and Fort Rich were providing necessary supplies and equipment.

The club is justly proud of a letter of thanks from Dr. Leo J. Gehrig, Chief of BMS, acknowledging its “timely assistance” and commending its “emergency communications group in providing a communications link relative to the Alaska earthquake . . .”

“Hazards received by the NIH were activated early Saturday afternoon, March 28,” Dr. Gehrig said, “and the cooperation of the entire communications group in transmitting information to our staff was greatly appreciated by this Bureau and its Division of Indian Health.”

Speaking for the NIH Director, Mr. Seggel has expressed to each of the 9-month period from September 14, 1964 to June 18, 1965.

We don’t fully realize the hardships of the pioneers until we remember that they plowed westward day after day, month after month—into the setting sun . . . without sunglasses.—Hot Shoppes Table Talk.
Proposed Law Provides More of Moving Costs

The Civil Service Commission has sent Congress a legislative proposal that would authorize Federal agencies to pay more of the moving costs of employees who are relocated for the convenience of the government.

The proposal seeks to amend the Administrative Expenses Act of 1946 under which moving expenses of many non-Foreign Service employees have been paid for the past 18 years.

It would authorize agencies to increase the weight limit of transported household goods to 11,000 pounds, up some 60 percent from the present 7,000-pound limit, and liberalize travel expenses of the employee's immediate family.

Under current law, the government does not pay food and lodging costs of the employee's family en route to the new duty post.

Subsistence Expenses

Another provision would allow agencies to pay subsistence expenses of the employee and his immediate family for up to 30 days while they occupy temporary lodging, such as a motel.

The government does not now reimburse an employee for the extra living expenses incurred between his arrival at the duty post and the time of moving into permanent quarters.

Still another feature would authorize reimbursement for storage of household goods up to three years of employees who move to isolated duty stations within the United States (excluding Alaska and Hawaii) where there is no residential housing.

Out-of-pocket costs incurred by an employee in moving in the government interest has averaged about $560. Some 35,000 employees are relocated each year.

DYER LECTURE

(Continued from Page 1)

are credited with notable advances in understanding the transmission of known animal cancer viruses and their mode of action within the living cell.

Recently he and his associates discovered that Rous sarcoma virus, the most virulent of the tumor viruses, needs a "helper virus" to create new infectious viruses inside the cell.

Before joining the University of California faculty at Berkeley in 1958, Dr. Rubin served with the Public Health Service in Montgomery, Ala.

Since receiving the Doctor of Veterinary Medicine degree from Cornell University in 1947, he has held fellowships with the National Foundation, the American Cancer Society, and California Institute of Technology.

In 1959 the American Association for the Advancement of Science awarded him the Anne Frankel-Rosenthal Cancer Research Award for his work concerning the relationship between tumor viruses and animal cells.

Other awards with which Dr. Rubin has been honored include the 1961 Eli Lilly Award in Bacteriology and Immunology, administered by the American Society for Microbiology, and the 1964 Mekis Research Award for developing a practical assay for detecting chicken leukemia viruses, thus aiding in the development of a safe measles vaccine.

Unit Is Quietly Effective in Controlling Rodents, Insects

Thermal fog machine heats and atomizes insecticide for use in open spaces. The fog, which spreads and penetrates to all areas of a room, is a quick way to treat a large area for cockroaches and flies. It is not used in offices, laboratories, or where people are working.—Photos by Sam Silverman

By Bob Walters

Fugitive mice and hungry cockroaches are the number one problems confronting the Insect and Rodent Control Unit of the Division of Research Services.

Although the only time most people at NIH are aware of insect and rodent control is when they smell insecticide, this unit operates with quiet effectiveness around the clock in the Clinical Center, throughout other NIH buildings, on the grounds of the reservation, and at the Animal Center.

The animal rooms scattered throughout the reservation are a source of fugitive rodents, as well as the main attraction to roaches. Here there is usually plenty of food, plus nooks and crannies for hiding and breeding. Also, careless eaters in offices and laboratories often leave tidbits from lunches and snacks that may attract roaches.

Procedure Explained

Fortunately, there is an eradication and control program to keep the insects and rodents within bounds. Besides a routine program, this unit also welcomes complaints.

When a complaint is received, a check is made the same day to verify it, and treatment of the offending area is usually begun immediately. Treatment is continued on a trouble-shooting basis until the problem has been eliminated or brought under control.

The rodent problem arises from within and outside the buildings. Inside the buildings escaping mice, rats, and hamsters present the biggest problem. Some of these rodents carry infectious organisms and, if they get to other rodent colonies, may reinfect someone's research.

A big help in controlling these rodents, besides poison baits, is the use of the Thermal fog machine.

NYU Is Awarded Grant For Biological Study of Psychotic Disorders

A $555,670 grant has been awarded by the National Institute of Mental Health to the New York University Medical Center for establishment of a clinical research center for biological studies of psychotic disorders, to be located in the Psychiatric Division of Bellevue Hospital Center in New York City.

The grant, for the first year of a proposed 7-year period, will be under the direction of Dr. S. Bernard Wortis, Professor and Chairman of the Department of Psychiatry and Neurology, NYU.

Establishment of a clinical research center will make available a group of patients for study under controlled environmental conditions. The patients will be characterized behaviorally and will be studied by an interdisciplinary team in order to determine possible relationships among metabolic, physiological and behavioral factors.

Intensive Study Planned

The Medical Center will pursue a broad, intensive study of schizophrenia. Past research efforts have revealed the presence of some unusual metabolic substances in schizophrenic patients.

Alterations have been observed in the amounts of noradrenaline and epinephrine produced in certain types of psychotic patients.

Further work in the area of metabolic disorders will include attempts to isolate, identify and synthesize abnormal metabolites. The environment of the metabolic ward will be carefully controlled for the evaluation of the possible roles of these metabolic phenomena in mental illness.

In addition the clinical research center program will include basic biochemical studies of neurohormones, investigations into genetic and electrophysiological factors in disturbed emotional states, and intensive studies of the effects of pharmacological agents on mental illness.

House Group Approves $1.06 Billion for NIH

As this issue of the Record went to press, the House had begun floor consideration of the Fiscal 1965 DHEW appropriation bill, including funds for NIH.

The measure, as reported by the House Appropriations Committee, allocates $1,060,200,000 for NIH, a net reduction of $4,25 million from the reprinted Administration request of $1,064,450,000.

Overall, the bill provides a total of $6.3 billion for DHEW, of which $1.6 billion is for the Public Health Service. Funds for NIH are part of the PHS appropriation.
Results of the study, which was supported by the National Institutes of Health, showed that the enzyme defect responsible for homocystinuria could be corrected by administering the amino acid cysteine. This finding suggested a new approach to the treatment of this rare disease, which affects about one in every 200,000 newborns.

The researchers, led by Dr. John F. R. Briner, of the National Institutes of Health, administered cysteine to newborns with homocystinuria and found that it significantly reduced the levels of homocysteine, a harmful byproduct of protein metabolism, in their blood. They also observed that the infants showed improved growth and development.

In addition, the study revealed that administering cysteine to older children with homocystinuria could reverse some of the symptoms of the disease, such as mental retardation and heart disease. This finding has important implications for the treatment of this disease, which is associated with a higher risk of cardiovascular disease and premature death.

The research was published in the journal Pediatrics, and it has been widely cited by other scientists and clinicians. The findings have also sparked interest in the development of new treatments for homocystinuria, which is estimated to affect about one in every 10,000 newborns.

In conclusion, the study conducted by Dr. Briner and his team has made significant contributions to our understanding of homocystinuria and has opened up new avenues for treatment. The results have important implications for the care of newborns and children with this rare disease, and they may also provide insights into the development of new treatments for other conditions associated with abnormal amino acid metabolism.
PHS Contracts for Studies to Prevent, Control Hemorrhage in Acute Leukemia

The Public Health Service recently awarded four contracts totaling $300,000 for coordinated "pilot" studies of blood platelet replacement therapy to prevent and control hemorrhage in acute leukemia. Blood platelet is an important factor in blood clotting.

The awards were made to the American Red Cross in Washington, D.C., Children's Cancer Research Foundation in Boston, Children's Hospital of Philadelphia, and Children's Hospital of Los Angeles.

The National Cancer Institute will monitor the contracts through its Acute Leukemia Task Force which includes representatives of more than a dozen institutions active in leukemia research.

Scientists in these institutions are working together to extend the gains made in recent years in the treatment of acute leukemia, particularly in children, and to make the benefits of research available to as many leukemia patients as possible.

Hemorrhage is one of the most serious problems in the management of leukemia, Dr. Lynch explained. It is caused by deficiency of blood platelets, which enable blood to clot.

Is Forward Step

The work to be done under the contracts represents a step toward solving the problems that now rule out widespread use of platelet replacement.

Immediate objectives are to define the conditions under which platelets ought to be given and the results to be expected, and to work out ways of collecting and supplying large amounts of platelets on a regular basis.

The contract with the Children's Cancer Research Foundation, headed by Dr. Sidney Farber, is in the amount of $120,000, and that with the Children's Hospital of Philadelphia, where Dr. Isaac Djerassi will direct the work, $35,000.

Dr. Farber and Djerassi were pioneers in platelet replacement therapy and have been utilizing the technique on a modest scale for some time.

Hospital Has Contract

The Children's Hospital of Los Angeles, where Dr. Deeman Hammond will direct the research, has a contract of $60,000.

The Red Cross, for which Dr. James H. P.ert directs the work, has an agreement totaling $88,000 for collecting fresh platelets to be used to treat patients at the National Cancer Institute and for research on processing of platelets.

A fifth member of the Acute Leukemia Task Force, the M. D. Anderson Hospital in Houston, Tex., is also investigating the use of platelets concurrently with other research supported in part by NCI grants. The work there is directed by Dr. H. Grant Taylor.

Herbert Nichols Named NHI Assistant Chief

Of Public Information

Dr. Ralph E. Knutti, Director of the National Heart Institute, has announced the appointment of Herbert B. Nichols as the Institute's Assistant Chief for Public Information and Assistant Chief of its Heart Information Center.

Mr. Nichols, previously Information Officer for the Division of Research Facilities and Resources, will be responsible in his new position for press, radio, TV, film, and publications activities.

Experience Cited

From 1949 until 1962, when he came to NHI, Mr. Nichols was Information Officer of the U.S. Geological Survey. For one year, 1954-55, he aided in establishment of a public relations unit for General Electric Research Laboratory in Schenectady, N.Y.

Mr. Nichols has been a science writer since he began free-lancing during his undergraduate days at Harvard University. For 18 years he was Natural Science Editor of the Christian Science Monitor.

A native of South Norwalk, Conn., he attended Suffield Academy and in 1932 received his B.S. degree in biology from Harvard.

In 1956-57, as a lieutenant colonel, USAFR, he was an observer for Adm. Richard E. Byrd during the Weddell Sea Expedition, and in 1959-60, joined the Bellinghausen-Amundsen Sea Expedition as official observer for the Secretary of the Army.

Former NASW President

A member and former President of the National Association of Science Writers, Mr. Nichols is also on the Council of the American Association for the Advancement of Science. He is a member of the Geological Society of Washington, the Explorers Club of New York, the Bond Astronomical Club, and in 1944 he was co-winner of the George Westinghouse Award of the AAAS for "distinguished service to science in the field of journalism."

Mr. Nichols was invited to deliver the Sir Hubert Wilkins Memorial Lecture at the Explorers Club in New York on April 19.

Lost little boy to policeman: "I can't remember my address, but my area code is 914."—Saras in the Saturday Evening Post.
Malayan Research Team Names Malaria Parasite in Honor of Dr. Young

A Malayan research team, supported in part by a grant from the National Institute of Allergy and Infectious Diseases, has named a newly isolated malaria parasite, *Plasmodium youngi*, in honor of Dr. Martin D. Young, who recently retired from the Public Health Service.

At the time of his retirement, Dr. Young was NIAID's Associate Director for Extramural Programs.

The new species of parasite, discovered in a young gibbon in the Malayan State of Kelantan in May 1962, was described in a paper appearing in the March 1964 issue of the American Journal of Tropical Medicine and Hygiene.

Authors Listed

The authors of the paper are the late Dr. Don E. Eyles, Drs. Yap Loy Fong, F. L. Dunn, E. Guinn, Mc Wilson Warren, and A. A. Sandosham.

Before his death in the fall of 1963, Dr. Eyles headed the Far East Research Project of the Laboratory of Parasite Chemotherapy, NIAID, stationed at Kuala Lumpur, Malaya.

Both Drs. Guinn and Warren are on the staff of the Far East Research Project. Drs. Fong and Sandosham are members of the Institute for Medical Research at Kuala Lumpur, and Dr. Dunn is associated with a University of California Project there.

Dr. Braunwald Delivers Haile Selassie Lecture

Dr. Eugene Braunwald, Chief of the Cardiology Branch, National Heart Institute, was scheduled to deliver the annual Haile Selassie Lecture yesterday before the Royal Society of Medicine, London, England.

The lecture was endowed several years ago by the Emperor of Ethiopia, and the lecturer is chosen by the Academic Board of the National Heart Hospital of London.

Dr. Braunwald is the first American to be honored with this lectureship. His subject was “The Control of Ventricular Function in Man.”

In December 1963, Dr. Braunwald delivered the Eastman Memorial Lecture at the University of Rochester and in January 1964 he was selected to be the annual James Bryan Herrick lecturer by the Chicago Heart Association.

One woman to another: “I won’t go into all the details; in fact, I’ve already told you more about it than I heard myself.” —Reader’s Digest from The Progressive Farmer.
RODENTS
(Continued from Page 3)

common, house-variety mousetrap.
At various times of the year, field rodents make an attack on the NIH buildings—doubtless having heard of the easy life inside. These animals are usually taken care of by poison-bait stations scattered around outside the buildings.

The bait is cheese, except when peanut butter is used as the alternate. Recently the Insect and Rodent Control Unit has been evaluating a paraffin-imbedded poison meant for outside use. They found that this bait is just as attractive to the rodents but does not deteriorate under moist conditions and so is particularly effective in outdoor poison-bait stations. Anticoagulant baits are the mainstay in the rodent control program, providing a wide margin of safety in case of accidental human ingestion.

The main activity of the insect control program is cockroach poisoning. This may be by spraying, fogging, misting, painting, or injecting with air compressor equipment. Whatever the method used, the one chosen is considered to be the most effective for the area involved.

For example, paintbrush applications are made along the baseboards of animal rooms. Fogging, with a noisy, thermal fog generator, is used to treat areas difficult to reach by some of the other hand methods.

In charge of the Insect and Rodent Control Unit is Richard Boothtcher, an entomologist who began his insect-chasing career in the Plant Quarantine Division, USDA, inspecting the baggage of irritate travelers for contraband plants prohibited from U.S. importation. He obtained an M.S. in entomology from the University of Maryland in 1958.

One of Mr. Boothtcher's ongoing projects is the assembly and maintenance of a reference and teaching collection of local insects of significance to the NIH program. He has collected and identified a majority of the insects of public health significance at NIH and a good many of those found at the Animal Center.

Because of the limitations imposed by such areas as nursing units, animal rooms, insectaries, and food preparation areas, a balance must be reached between pesticidal effectiveness and mammalian non-toxicity.

Approved Pesticides Used

Only those pesticides registered with the U. S. Department of Agriculture and fully approved for indoor pest control are used. Even then a conservative program is strictly followed, with field tests and toxicity tests of pesticides before they are approved for routine NIH use.

Because of cockroach resistance to insecticides, the insecticides employed have to be periodically evaluated for their effectiveness on the local roach population.

For example, chlordane produced extremely good results from 1954 to 1967, until roach resistance developed to a point that made this insecticide ineffective. Now the main insecticide used in the Clinical Center is refined malathion. Diazinon, kresox, and malathion are being rotated in other buildings.

Next to cockroaches, the most frequently encountered insects at NIH are flies, gnats, ants, wasps, and boxelder bugs. Less frequently encountered are fleas, carpet beetles, grain moths, mites, ticks, and carpenter bees.

At the Animal Center, horse flies, stable flies, and mosquitoes are problems that are not usually encountered here on the reservation. But regardless of the insect, they all require some degree of individual attention to eliminate.

DENTAL ROOM
(Continued from Page 4)

Entries for NIH Art Exhibit Must Be Submitted May 1

All NIH personnel and their immediate families interested in entering the 6th Annual NIH Art Exhibit must submit entries on Friday, May 1, between 5 and 6 p.m., in the 14th floor solarium in the Clinical Center. The entrance fee is $1 per entry.

Judges for this year’s exhibit are Jose Bermudez, noted sculptor and Head of Graphic Arts, Pan American Union; Albert J. Carter, Curator of Art, Howard University, and G. D. O’Connell, Assistant Professor of Art, University of Maryland.

The exhibit will be displayed in the Clinical Center lobby, May 10 through June 5.

The dental room and its equipment are so designed that the patient can relax in a reclining position, while the dentist and his assistant work from comfortable positions in swivel chairs.—Photo by Jerry Hecht.

Dr. Ferrazano Named Hospitals Division Chief

Dr. Gabriel P. Ferrazano has been appointed Chief of the Division of Hospitals in the Public Health Service, effective July 1. He is currently head of the Division of Health Mobilization. Dr. Ferrazano succeeds Dr. Myron D. Miller who will become Medical Officer in Charge of the PHS Hospital, San Francisco, Calif.

Dr. Ferrazano Named Hospitals Division Chief

Dr. George Harrell, Dean of the College of Medicine, University of Florida, told the audience that the general clinical research centers program has had a strong impact on medical education, especially in making faculty and students approach patient care from the research point of view with its emphasis on critical evaluation of data collected on patients. Every teaching hospital of the future, said Dr. Harrell, should incorporate into its design a general clinical research center.

Major problems discussed by the participants were the proposed new policy for payment of hospital service charges in support of research conducted in the centers, ethical considerations in conducting research on human patients, recruitment of clinical research nurses, communications among the disciplines using the centers, safety measures in hazardous areas of clinical research, and relationships between center directors and hospital administrators.

Research highlights presented by staff scientists of the centers indicated the wide scope of their scientific investigations, including genetics, cancer chemotherapy, surgery, studies on the effects of starvation on man, muscular disorders, metabolic studies, and rheumatology.

Dr. Stephen Freed, Scientific Administrator, General Clinical Research Centers Branch, DRFR, chaired the 2-day meeting.

Clinical Research Center Administrators Meet on Problems and Programs

More than 100 directors, assistant directors, and hospital administrators representing 72 general clinical research centers met at the National Institutes of Health April 2 and 3 to discuss administrative problems and scientific programs.

Supported by the division of Research Facilities and Resources, the centers are located in institutions in 30 states, the District of Columbia, and Puerto Rico.

Outlining the progress of the clinical research centers program, Dr. Frederick L. Stone, Chief of DRFR, said the sharp growth curve representing the establishment of 72 general clinical research centers in less than four years would now level off as the program went into a period of steady, general growth.

During the next few years, he pointed out, the Congress will be interested in the capabilities displayed by the center staffs and the host institutions. Because Congress must assess the value of the centers nationally, it is upon that assessment the future of the program will depend.

Program Has Impact

Dr. George Harrell, Dean of the College of Medicine, University of Florida, told the audience that the general clinical research centers program has had a strong impact on medical education, especially in making faculty and students approach patient care from the research point of view with its emphasis on critical evaluation of data collected on patients. Every teaching hospital of the future, said Dr. Harrell, should incorporate into its design a general clinical research center.

Major problems discussed by the participants were the proposed new policy for payment of hospital service charges in support of research conducted in the centers, ethical considerations in conducting research on human patients, recruitment of clinical research nurses, communications among the disciplines using the centers, safety measures in hazardous areas of clinical research, and relationships between center directors and hospital administrators.

Research highlights presented by staff scientists of the centers indicated the wide scope of their scientific investigations, including genetics, cancer chemotherapy, surgery, studies on the effects of starvation on man, muscular disorders, metabolic studies, and rheumatology.

Dr. Stephen Freed, Scientific Administrator, General Clinical Research Centers Branch, DRFR, chaired the 2-day meeting.
Kieley Will Help Select Ford-Future Scientists Of America Winners

James F. Kieley, Chief of the Research Information Branch, National Cancer Institute, has been asked by the National Science Teachers Association to participate as a member of the National Judging Committee in selecting winners of the 1963-64 Ford-Future Scientists of America Awards Program. Mr. Kieley will assist in reviewing 240 reports selected by 12 regional judging committees from approximately 10,000 entries. Twenty of the authors on 11th and 12th grade levels will receive national recognition and a college assistance scholarship.

Program Encourages Students

The program attempts to illustrate to students the true nature of scientific enterprise by encouraging them to engage in scientific experimentation, report their results, and compete with those reports for possible recognition.

It is open to U.S. students in grades 7 through 12, with various awards based on grade level. The projects are concerned with any branch of science, mathematics, or social studies, but must represent the work of individual students rather than groups.

Dr. Philip, Director of RML, Returns From Conferences Abroad

Dr. Cornelius B. Philip, Director of NIAID's Rocky Mountain Laboratory, recently returned to Hamilton, Montana, from conferences and consultations in Italy, Egypt, and Hawaii.

Arriving in Rome on February 26, Dr. Philip met with Dr. E. Biocca of Rome University and Dr. A. Corradetti of the Institute di Superiore Sanita to discuss preparations for the upcoming Congress of Parasitology, which meets in Rome in September. Dr. Biocca is President and Dr. Corradetti is a Vice President of the Congress.

Meets With Naval Unit

In Cairo, Dr. Philip met with representatives of the U.S. Naval Medical Research Unit #3 to discuss a joint PL 480 project.

The study concerns rickettsial diseases in Egypt, particularly those in livestock and ticks. During his week-long stay in Egypt he met with various officials concerned with public health there.

Dr. Philip's visit to Hawaii was in connection with his work with the Smithsonian Institution. He serves as a consultant to the Institution on a study of the biology of sea birds in the mid-Pacific.

Lymphocytes' Suppression Essential to Organ Transplants, Dr. Dougherty Finds

The fighters against organ transplants from one person to another are small—even microscopic—but they are efficient. They are the lymphocytes, better known as white blood cells. They attack foreign invaders that enter the body, but they don't know the difference between a harmful invader and an invader that is there to help.

Until these fighter cells, or lymphocytes, are suppressed, organ transplants can't be successful, according to Dr. Thomas F. Dougherty, Head of the Department of Anatomy and Director of the Radiobiology Laboratory at the University of Utah College of Medicine.

NCl Supports Research

Dr. Dougherty, whose current research is supported by a grant from the National Cancer Institute, discussed the problem of suppressing lymphocytes as well as ways of combating the problems, at the annual meeting of the California Medical Association in Los Angeles, March 24.

One of six guest speakers at the 3-day scientific meeting, Dr. Dougherty spoke on: "Hormonal Influences on Antibody Synthesis and Allergic Phenomena." He is one of the pioneers in the study of lymphocytes and their effect within the body.

He explained that he is studying three ways in which lymphocytes are more familiar as the body's infection fighters, act as a detriment rather than a benefit to the body. The lymphocytes fight against tissue and organ transplants; they cause allergies; and they can cause autoimmune diseases in which a person's own cells are attacked by his lymphocytes.

There is a difference, he said, between a lymphocyte, or white blood cell, and an erythrocyte, or red blood cell. He explained that it requires the entire lymphocyte cell to manufacture its kind of antibodies, and the antibodies it produces can't be extracted from the cell as yet. The whole living cell is necessary to transfer immunity.

Red Cells Smaller

Red blood cells are much smaller and are not manufactured intracellularly. They combat bacteria, and one of the complications in suppressing lymphocytes is that the methods commonly used also suppress the production of erythrocytes and other blood cells. The person is then susceptible to disease.

DNA prevents the duplication of lymphocytes, but also they lower the red cell count and cause anemia.

He said that a kind of hormone, corticosteroid, probably would act with more selectivity. The corticosteroids act more efficiently to prevent lymphocytes from multiplying than they do to inhibit red blood cell manufacture. It is also possible to change the chemical make up of the hormone to make it even more efficient in suppressing the lymphocytes. This is the subject of Dr. Dougherty's present experiments at the University of Utah.

Helps Combat Allergies

The suppression of lymphocytes would not only make successful transplants probable but would also help combat allergies. Diseases caused by a person's lymphocytes attacking his own cells have already been arrested by suppressing the lymphocytes. According to Dr. Dougherty, one of these autoimmune diseases, lupus erythematosus, was fatal 10 years ago, prior to corticosteroid treatment, but can be inactivated today.

REHEARSAL SCENES FROM APRIL MUSICAL

In these rehearsal scenes (left to right) from the R&W Hamsters production of "Flower Drum Song," Robert Kavanaught and Bess Grabiner are pictured in the Grant Avenue dance sequence, and Sammy Fong (Oxzie Grabiner) sings to his mail ordrance Hancei Mei Li (Janet Sperling): "Don't Marry Me." Tickets are on sale at the R&W office in Building 31 and at the film desks in the Clinical Center and the Westwood Building. For information about ticket sales in other buildings, call Bess Grabiner, Ext. 63597. Performances, all in the CC auditorium, are scheduled for 8:30 p.m. on Thursday, Friday and Saturday, April 30, May 1 and 2, and on Sunday afternoon, May 3, at 3 o'clock. The opening performance, Tuesday evening, April 28, will be for hospital patients, who are requested to obtain their free tickets from the Patient Activities Section.

Photos by Bob Pumphrey.

Dr. Wanko, of NINDB, Dies of Heart Attack

Dr. Theodor Wanko, 40, Head of the Electron Microscopy Program of the Ophthalmology Branch, National Institute of Neurological Diseases and Blindness, died April 3 at Suburban Hospital following a coronary occlusion.

Dr. Wanko's pioneering electron microscope studies of eye and nerve tissue have served as guides in other basic physiological and pathological research.

Especially noteworthy is his electron micrograph of the crystalline lens. An exhibit on the crystalline lens received honorable mention at the National Academy of Sciences, Section B 1960.

A native of Vienna, Austria, Dr. Wanko first joined the NIH staff as a Visiting Scientist in October 1948. After his return to Austria, in Vienna, he came back with his family to accept a permanent position and applied for U.S. citizenship which was granted in 1962.

Dr. Wanko obtained his pre-college training for his later career as research scientist in Vienna. After an interruption for military service he resumed his education, receiving an M.D. degree from the University of Vienna in 1962.

Dr. Wanko is survived by his wife, Dr. Annemaria Wanko, and a daughter, Martina.