Reorganization in NIAMD Creates New Sections

Clinical and laboratory studies of disorders such as diabetes and research on gastroenterology received fresh stimulus recently through organizational changes in clinical investigations branches at the National Institute of Arthritis and Metabolic Diseases. Changes have also been announced in the Institute’s Laboratory of Biochemical Pharmacology.

2 Branches Involved

Changes in clinical investigations, effective July 1, involve the establishment of new sections in the Metabolic Diseases Branch and the Clinical Endocrinology Branch of NIAMD.

Dr. G. Donald Whedon, Director of the Institute, also announced the appointment of NIAMD’s Clinical Director, Dr. Robert S. Gordon Jr., as Chief of the Metabolic Diseases Branch. He succeeds Dr. Whedon who had headed this branch since its inception in 1952.

Under Dr. Gordon, the Metabolic Branch. He succeeds Dr. Whedon, who had headed this branch since its inception in 1952.

NIH Seeks to Freeze-Preserve, Supply Blood Elements for Treating Leukemia

Methods for freeze-preserving and supplying human blood elements needed for treating leukemia will be developed under a research contract with the Massachusetts General Hospital in Boston.

The contract has been awarded by the Public Health Service for an initial one-year period in the amount of $70,750.

Hemorrhage Controlled

Transfusions of blood platelets effectively control hemorrhage, a frequent cause of death in leukemia. Transfusions of certain white cells help to enhance the patient’s resistance to infection. However, no adequate method of preserving these blood elements has been devised to date.

Dr. Charles E. Huggins, Director of the Cryobiology Laboratory at Massachusetts General Hospital and a pioneer in the development of techniques for preserving red blood cells by freezing, was named principal investigator on the newly awarded contract.

When preservation methods have been perfected, Massachusetts General Hospital will supply frozen platelets and white cells to hospitals cooperating in the National Cancer Institute’s nation-wide leukemia therapy program.

Available for Study

In addition, frozen blood elements from normal donors and acute leukemia patients will be made available for virus studies by scientists cooperating in the Institute’s virus-leukemia program.

Serving as NCI’s project officer in the contract is Dr. Robert E. Stevenson, Chief of the Virology Research Resources Branch.

Work Underway on Three Parking Lots To Ease Congestion During Construction

Three additional parking areas are being provided on the NIH reservation to replace those disrupted next three years. George P. Morse, Chief of the Plant Safety Branch, said the parking lots are expected to be ready by Labor Day.

Two of the parking lots will be located east of Building 31 in the area between Rockville Pike and the creek which runs parallel to the Pike. These two lots on either side of North Drive will accommodate a total of 236 cars.

The third lot, located between Building 30 and Service Road West, will be developed to accommodate 260 cars.

Lots Are Temporary

These lots are planned as a temporary measure, to be used until the new buildings and adjacent parking facilities are completed.

Mr. Morse said that many parking areas will be congested during the next 5 years during construction and occupancy of new buildings, but NIH management is taking steps to increase and improve all parking facilities as soon as possible.

A detailed report of parking facilities was recently completed by

Methods Sought to Protect Leukemia Research Workers

Methods, equipment and facilities for protecting personnel and preventing cross-contamination of virus-cancer experiments will be developed by the Dow Chemical Co., of Midland, Mich., under a contract with the Public Health Service. The agreement is funded at $989,000 for the first year.

Control of biohazards in virus research is one of four principal areas of investigation under virus-leukemia program for which the National Cancer Institute received a special appropriation of $10 million from Congress for 1965.

Areas Listed

The other areas are: the cause and prevention of human leukemia, treatment of human leukemia, and animal leukemias and their possible relationships to man.

The Pitman-Moore Division of the Dow Chemical Co. at Indianapolis, Ind., will design, construct, and test full-scale models of new containment facilities needed for studies at the Institute’s proposed virus laboratory and animal facility here at NIH.

Information and design criteria for biohazards control and containment developed under this contract will become available to investiga-

Dr. Commoner to Appear on WETA Show Next Monday

The evil effects of modern scientific discoveries will be discussed by Dr. Barry Commoner, noted biologist, in a Dave Garroway interview, “Science and Social Responsibility,” to be telecast on WETA (Channel 26), next Monday at 6:30 p.m.

The program, one of WETA’s popular Exploring the Universe series, will probe the effects of atomic fallout, air pollution and insecticide poisoning. It will be repeated Wed., Aug. 4, at 10:30 p.m.
Kathleen Doherty Named in First Edition Of Book on Outstanding Young Women

Kathleen M. Doherty, a research dietitian in the Clinical Center’s Nutrition Department, will be included in the first (1966) edition of Outstanding Young Women of America, an annual biographical compilation of women between 21 and 36 years of age who have made outstanding contributions in their field.

Leaders of women’s organizations throughout the country have contributed to the first edition.

Miss Doherty joined the Nutrition Department staff in 1963. As a research dietitian, she collaborates with NIH clinical investigators in determining the nutritional requirements of a specific patient and then works with the patient in selecting his choice of foods items within the allowable range.

She then plans the diet, calculated to meet the needs of the study, and prepares the individual menu.

A native of Liberty, N. Y., Miss Doherty attended high school there and was valedictorian of her graduating class. She is a graduate of Marywood College, Scranton, Pa., where she received a B.S. degree in 1961 as well as the Schiff Award, a departmental award in Home Economics.

In Who’s Who

In her senior year she was listed in Who’s Who Among Students in American Universities and Colleges, 1961-62. She served her internship at St. Mary’s Hospital, a Mayo Clinic affiliate, in Rochester, Minn.

Miss Doherty, a member of the American Dietetic Association, served as Co-chairman of Career Guidance and Publicity of the District of Columbia Dietetic Association in 1964-65, and is presently Hospitality Chairman of that organization.

She also participates in a service of the association known as ‘‘Dial-A-Dietitian’’ and is a volunteer worker for Cerebral Palsy of Washington, D. C.

Two New Publications Issued by NIH Library

The NIH Library of the Division of Research Services has issued two new publications.

The first, a revised edition of the “NIH Library Guide,” describes the various services of the library and how they may be obtained.

It also includes a floor plan of the library, as well as a description of the various guides to the literature, borrowing policies, and hours of operation.

The second publication, entitled “Periodicals Currently Received in the NIH Library 1965,” is a listing by title with a subject index of some 2,500 periodicals received by the library.

Either publication may be obtained at the NIH Library, Division of Research Services, on the fifth floor of the Clinical Center, or by calling Ext. 62447.

To cut costs, watch your waste line. Suggest better and more economical ways to do the job.
Dr. Robert Philip Named
RML Assistant Director

The appointment of Dr. Robert N. Philip as Assistant Director of the Rocky Mountain Laboratory in Hamilton, Mont., a field station of the National Institute of Allergy and Infectious Diseases, was announced recently by Dr. Horatio J. Davis, Institute Director.

In his new position Dr. Philip will assist Dr. Herbert G. Stoenner, RML Director, in planning, directing, and evaluating the 44-year-old research unit's program.

Born in York, Nebr., Dr. Philip attended Harvard University and the University of California, where he received his M.D. in 1948. In 1953 he was granted a master's degree in public health by the Harvard School of Public Health.

Joins Corps in 1949

A member of the PHS Commissioned Corps since 1949, Dr. Philip has served as an epidemiologist in the Laboratory of Infectious Diseases, NIAID; at the PHS Arctic Research Center in Anchorage, Alaska; and at the Rocky Mountain Laboratory since 1960.

He is a member of the American Medical Association, the American Public Health Association, and the American Association for the Advancement of Science.

Plaque Marks Plot 23, Source of Aureomycin

A plaque on the south gatepost of Sanborn Field at the University of Missouri's College of Agriculture marks a historic site—plot 23, the source of streptomycin aureofascis, strain A 377. It was from this fungus that aureomycin was discovered.

A soil sample from this particular plot, which had been used since 1888 for continuous cropping of wheat without treatment, was sent to Dr. R. W. Duggar for use in his research on antibiotics at Lederle Laboratories.

Botany Head

Dr. Duggar was Professor of Botany at the University of Missouri in the early 1960s and later head of the Botany Department at the University of Wisconsin. After his retirement he became associated with Lederle Laboratories in New York.

The remnant of the soil sample which supplied the organism from which aureomycin was developed was later placed in the Smithsonian Institution in Washington, D.C.

RML, Approaching Half-Century Mark, Is World Center for Study of Zoonoses

The Rocky Mountain Laboratory of today is a complex of modern buildings located in the Bitterroot Valley section of Montana.

During the course of nearly half a century, the Rocky Mountain Laboratory, a field station of the National Institute of Allergy and Infectious Diseases, has earned a reputation as a world center for the study and control of zoonoses—animal diseases transmitted to man.

Beginning in an abandoned schoolhouse in Hamilton, Mont., RML has grown into a complex of buildings, including an insectary.

Public Health Service scientists who want to work in the Bitterroot Valley in 1921 to find the cause of Rocky Mountain spotted fever would find it hard to recognize the laboratory today.

Interests Expanded

Traditional interests in animal- and arthropod-borne organisms have been expanded to include the search for new knowledge about viruses, rickettsiae, and bacteria.

The laboratory attracts many visitors from a second grade class on a field trip to study some of the world's most accomplished microbiologists seeking firsthand knowledge of special methods for research on medical entomology, immunology, and cell fractions.

One such visitor is Dr. Werner Breher, Chief of the Tuberculosis Research Laboratory of the Robert Koch Institute in West Berlin.

Founded in 1891 by Robert Koch, the Institute is the West German counterpart of NIAID. It is the key to the German research on human infectious disease and vaccination.

Navy Band Plays Aug. 3

At 4th Outdoor Concert

The fourth in this season's series of outdoor band concerts for Clinical Center patients will be presented next Tuesday, August 3, at 7:30 at the United States Navy Band, on the patio adjoining the Clinical Center auditorium. In the event of rain, the concert will be held in the auditorium.

NHL employees, their families and friends are invited to attend. However, patients will have priority in seating.

Investigations in Dr. Breher's laboratory are focused on the problem of natural resistance to acquired immunity to tuberculosis in men and animals.

Dr. Breher, whose 3-month visit in the U.S. is sponsored by the World Health Organization, came to RML specifically to learn about the "Ribi Refrigerated Cell Fractionator," an instrument developed by Dr. Edgar Ribi, Head of the laboratory's Molecular Biology Section.

Dr. Breher is especially interested in the separation of immunizing fractions from tubercle bacilli. However, his visit has also stimulated a collaborative research project with Dr. Ribi on a new, killed tuberculosis immunizing agent currently under study at the laboratory.

Students Are Visitors

Accomplished scientists are not the only visitors at RML. The laboratory is also interested in developing budding scientists.

For this reason, RML is again serving as a host institution to promising high school students who have been awarded fellowships by the Montana Division of the American Cancer Society.

Other visitors at RML this summer include Dr. Mun-Hen Ng, Commonwealth Serum Laboratories, Melbourne, Australia; Dr. Shiochiro Ohara, Director of Ohara General Hospital, Fukushima, Japan; and scientists from various U.S. universities.

Terry Appoints Thieme

Dr. Frederick P. Thieme, Vice President of the University of Washington in Seattle, has been appointed by PHS Surgeon General Luther L. Terry as a 4-year term on the National Advisory Dental Research Council.

PHS Recommendations For Flu Immunization And Control Announced

Surgeon General Luther L. Terry of the Public Health Service recently announced the recommendations for influenza immunization and control in the 1965-66 season developed by the Advisory Committee on Immunization Practices.

After thorough review of all available data, the advisory committee noted that the influenza experience in the U.S. during 1964-65 was relatively limited. The last major epidemic of Type A influenza occurred in 1962-63 in most of the country and in 1963-64 on the West Coast.

Therefore, in view of the 2- to 3-year periodicity of the disease, the committee anticipates that somewhat increased amounts of influenza may be expected in the coming season. Areas which experienced fairly heavy outbreaks last winter may expect to be less affected in the coming year.

Recommendations Repeated

The advisory committee reiterated previous recommendations for vaccination of persons in groups which experience high mortality from epidemic influenza. These include:

- Persons who suffer from chronic debilitating diseases, including diseases of the heart and circulatory systems, the lungs and the metabolic system.
- Persons in older age groups—recommendation based on three successive recent epidemics in which there has been a moderate increase in mortality among persons over 65 years and a marked increase in those over 65.
- Pregnant women, for whom increased mortality was demonstrated during the 1957-58 epidemic, although similar increases have not been noted in epidemics since that time.
- Patients residing in nursing homes, chronic disease hospitals, and other environments in which crowded living arrangements may lead to more rapid spread of the disease.

Sept.-Dec. Vaccination

The committee urged that vaccination begin in September and be completed by mid-December for maximum effectiveness during the winter season.

Individuals who have not received influenza vaccination since July 1963, when the last major change was made in vaccine composition, should receive two doses with an interval of approximately two months between them. It was noted, however, that even a single dose gives significant protection.

Don't tell the world what you can do—show it.
new Booklet Tabulates Graduate Enrollment, Ph.D. Data for NIH Use

A new booklet—Basic Reference Tables on Graduate Enrollment and Ph.D. Output in Selected Fields at 100 U.S. Institutions for the Years 1959-60 to 1963-64—is now available. This 112-page collection of tables is pertinent for NIH because the data focuses on science fields which provide the present and future supply of medical and health-related researchers.

Its format is designed for convenient reference on graduate enrollment for those responsible for reviewing such applications—the NIH advisory committees and others concerned with developing policies and programs for recruiting and training medical researchers and instructors.

The information was compiled through continuing collaboration between NIH and the Office of Education. Copies of the booklet may be obtained from Resources Analysis, Branch, OPP-DD, Ext. 64321.

PARKING

Use of public transportation to and from the reservation is also recommended.

Mr. Morse points out that one of the major problems at present is parking, and observes that, since those engaged in construction work must also use NIH parking facilities, to assure maximum benefit to employees and maintain safety standards, Mr. Morse requests that all employees comply with the NIH policy requiring display of NIH parking decals.

The committee on parking has been assigned the responsibility of providing constant study and review of parking and road systems needs. Mr. Morse said, in order to resolve future traffic problems and parking needs as they arise.
Dr. Karon to Research RNA Synthesis in Paris Before Texas Transfer

Dr. Myron R. Karon of the Medicine Branch, National Cancer Institute, will leave NIH August 3 to report for a year's Special Research Fellowship at the Institut de Biologie et Physico-Chimique, Paris, where he will join Prof. Francois Gros in research on RNA synthesis.

In August 1966 Dr. Karon will return to this country and become Associate Professor of Pediatrics and Chief of the Section of Applied Molecular Biology at the University of Texas M.D. Anderson Hospital and Tumor Institute, Houston.

Dr. Dr. Karon studies effects of antitumor agents on DNA, RNA, and protein synthesis in tissue culture cells.—Photo by Jerry Hecht.

Workshop Held Here on Structures of Proteins

Experts renowned in protein chemistry and related fields attended a 2-day Workshop on Conformational Problems in Proteins recently in the NIH Clinical Center. Meeting in informal sessions, they conferred on complexities of protein structure.

The conference was designed to stimulate new concepts and approaches to the problem of determining three-dimensional structures of proteins from their amino acid sequences by the ultimate use of computer methods.

Anfinsen Initiates Conference

Anticipation of the need to assess upcoming conformational problems in proteins led Dr. Christian Anfinsen, Chief of the National Institute's Laboratory of Chemical Biology and an authority on protein structure and metabolism, to initiate this conference.

Dr. Anfinsen was assisted by Dr. Alan D. Harrington, Professor of Biology at the Johns Hopkins University, and Dr. Harold A. Scheraga, Professor of Chemistry at Cornell University.

DNA Model Is Focus

The focus of attention, at the entrance to the exhibit, is an animated DNA (deoxyribonucleic acid) model, used to help scientists' efforts to decipher the coded language of heredity locked in the DNA molecule.

A heart pacemaker and heart pump, provided by the manufacturers through arrangements by NIH, are used in the portion depicting man's efforts to augment and replace failing or defective organs.

The main objective of the exhibit is to stimulate interest in the study of science and engineering to assure that the Nation's ever-increasing demands for top talent in these fields will be met in years ahead.

Exhibit Goes West

Following the World's Fair showing, the exhibit will go to the Los Angeles Museum of Science and Technology, and the following year it will be returned to the Smithsonian Institution's Museum of History and Technology in Washington, D.C. It was opened there by President Johnson in April.

The exhibit was cooperatively developed by the Civil Service Commission, National Science Foundation, Atomic Energy Commission, National Aeronautics and Space Administration, Department of Army, Navy, Air Force, Interior, Agriculture, Commerce, Health, Education, and Welfare; and the Smithsonian Institution.

Manpower Utilization

A major responsibility for effective manpower utilization in the Federal service rests on managers and supervisors to plan and control the work for which they are responsible, to actively encourage individual improvement and to create an environment that brings out the best in their employees.
Findings Refute 'Regulatory' Hypothesis Of Antihemophilic Factor Production

Two inherited hemorrhagic disorders, hemophilia A and von Willebrand's disease, are characterized by the fact that hemophilia A affects males only, whereas von Willebrand's disease is a dominant trait affecting both sexes. The hypothesis that the synthesis of factor VIII in hemophilic patients can stimulate factor VIII synthesis in patients with von Willebrand's disease, but not vice versa.

This observation has lent credence to the hypothesis that the sex chromosome normally carries genetic information for making the factor VIII molecule. However, the autosomal chromosome carries the factor that regulates the rate of synthesis of factor VIII.

Alternative Hypothesis

Having failed this crucial test, the regulatory hypothesis will probably have to be discarded; but the findings may rule out an alternative hypothesis.

Factor VIII

Presumably this regulatory factor is present in the plasma of hemophilic patients. While it does not affect the synthesis of factor VIII, it can correct the basic defect in von Willebrand's disease.

However, this attractive hypothesis may have to be discarded as a result of recent findings by Dr. Emily M. Barrow, C. C. Heindel, H. R. Roberta, and John B. Graham, of the University of North Carolina, Chapel Hill. Their studies involve a family with two different mutations responsible for von Willebrand's disease. The heterozygous parents were mild bleeders; their homozygous children severe bleeders.

The investigators conjectured that, if the regulatory hypothesis is valid, both heterozygotes and homozygotes should respond with similar levels of factor VIII synthesis after transfusions of homologous plasma. However, this attractive hypothesis will probably have to be discarded as a result of recent findings by Drs. Emily M. Barrow, C. C. Heindel, H. R. Roberta, and John B. Graham, of the University of North Carolina, Chapel Hill.

The researchers reported that, if the regulatory hypothesis is valid, both heterozygotes and homozygotes should respond with similar levels of factor VIII synthesis after transfusions of homologous plasma. However, this attractive hypothesis will probably have to be discarded as a result of recent findings by Drs. Emily M. Barrow, C. C. Heindel, H. R. Roberta, and John B. Graham, of the University of North Carolina, Chapel Hill.

Alternative Hypothesis

Having failed this crucial test, the regulatory hypothesis will probably have to be discarded; but the findings may rule out an alternative hypothesis.

Factor VIII

Presumably this regulatory factor is present in the plasma of hemophilic patients. While it does not affect the synthesis of factor VIII, it can correct the basic defect in von Willebrand's disease.

However, this attractive hypothesis may have to be discarded as a result of recent findings by Drs. Emily M. Barrow, C. C. Heindel, H. R. Roberta, and John B. Graham, of the University of North Carolina, Chapel Hill. Their studies involve a family with two different mutations responsible for von Willebrand's disease. The heterozygous parents were mild bleeders; their homozygous children severe bleeders.

The investigators conjectured that, if the regulatory hypothesis is valid, both heterozygotes and homozygotes should respond with similar levels of factor VIII synthesis after transfusions of homologous plasma. However, this attractive hypothesis will probably have to be discarded as a result of recent findings by Drs. Emily M. Barrow, C. C. Heindel, H. R. Roberta, and John B. Graham, of the University of North Carolina, Chapel Hill.

Alternative Hypothesis

Having failed this crucial test, the regulatory hypothesis will probably have to be discarded; but the findings may rule out an alternative hypothesis.

Factor VIII

Presumably this regulatory factor is present in the plasma of hemophilic patients. While it does not affect the synthesis of factor VIII, it can correct the basic defect in von Willebrand's disease.

However, this attractive hypothesis may have to be discarded as a result of recent findings by Drs. Emily M. Barrow, C. C. Heindel, H. R. Roberta, and John B. Graham, of the University of North Carolina, Chapel Hill. Their studies involve a family with two different mutations responsible for von Willebrand's disease. The heterozygous parents were mild bleeders; their homozygous children severe bleeders.

The investigators conjectured that, if the regulatory hypothesis is valid, both heterozygotes and homozygotes should respond with similar levels of factor VIII synthesis after transfusions of homologous plasma. However, this attractive hypothesis will probably have to be discarded as a result of recent findings by Drs. Emily M. Barrow, C. C. Heindel, H. R. Roberta, and John B. Graham, of the University of North Carolina, Chapel Hill.

Alternative Hypothesis

Having failed this crucial test, the regulatory hypothesis will probably have to be discarded; but the findings may rule out an alternative hypothesis.

Factor VIII

Presumably this regulatory factor is present in the plasma of hemophilic patients. While it does not affect the synthesis of factor VIII, it can correct the basic defect in von Willebrand's disease.

However, this attractive hypothesis may have to be discarded as a result of recent findings by Drs. Emily M. Barrow, C. C. Heindel, H. R. Roberta, and John B. Graham, of the University of North Carolina, Chapel Hill. Their studies involve a family with two different mutations responsible for von Willebrand's disease. The heterozygous parents were mild bleeders; their homozygous children severe bleeders.

The investigators conjectured that, if the regulatory hypothesis is valid, both heterozygotes and homozygotes should respond with similar levels of factor VIII synthesis after transfusions of homologous plasma. However, this attractive hypothesis will probably have to be discarded as a result of recent findings by Drs. Emily M. Barrow, C. C. Heindel, H. R. Roberta, and John B. Graham, of the University of North Carolina, Chapel Hill.

Alternative Hypothesis

Having failed this crucial test, the regulatory hypothesis will probably have to be discarded; but the findings may rule out an alternative hypothesis.

Factor VIII

Presumably this regulatory factor is present in the plasma of hemophilic patients. While it does not affect the synthesis of factor VIII, it can correct the basic defect in von Willebrand's disease.

However, this attractive hypothesis may have to be discarded as a result of recent findings by Drs. Emily M. Barrow, C. C. Heindel, H. R. Roberta, and John B. Graham, of the University of North Carolina, Chapel Hill. Their studies involve a family with two different mutations responsible for von Willebrand's disease. The heterozygous parents were mild bleeders; their homozygous children severe bleeders.

The investigators conjectured that, if the regulatory hypothesis is valid, both heterozygotes and homozygotes should respond with similar levels of factor VIII synthesis after transfusions of homologous plasma. However, this attractive hypothesis will probably have to be discarded as a result of recent findings by Drs. Emily M. Barrow, C. C. Heindel, H. R. Roberta, and John B. Graham, of the University of North Carolina, Chapel Hill.

Alternative Hypothesis

Having failed this crucial test, the regulatory hypothesis will probably have to be discarded; but the findings may rule out an alternative hypothesis.

Factor VIII

Presumably this regulatory factor is present in the plasma of hemophilic patients. While it does not affect the synthesis of factor VIII, it can correct the basic defect in von Willebrand's disease.

However, this attractive hypothesis may have to be discarded as a result of recent findings by Drs. Emily M. Barrow, C. C. Heindel, H. R. Roberta, and John B. Graham, of the University of North Carolina, Chapel Hill. Their studies involve a family with two different mutations responsible for von Willebrand's disease. The heterozygous parents were mild bleeders; their homozygous children severe bleeders.

The investigators conjectured that, if the regulatory hypothesis is valid, both heterozygotes and homozygotes should respond with similar levels of factor VIII synthesis after transfusions of homologous plasma. However, this attractive hypothesis will probably have to be discarded as a result of recent findings by Drs. Emily M. Barrow, C. C. Heindel, H. R. Roberta, and John B. Graham, of the University of North Carolina, Chapel Hill.

Alternative Hypothesis

Having failed this crucial test, the regulatory hypothesis will probably have to be discarded; but the findings may rule out an alternative hypothesis.

Factor VIII

Presumably this regulatory factor is present in the plasma of hemophilic patients. While it does not affect the synthesis of factor VIII, it can correct the basic defect in von Willebrand's disease.

However, this attractive hypothesis may have to be discarded as a result of recent findings by Drs. Emily M. Barrow, C. C. Heindel, H. R. Roberta, and John B. Graham, of the University of North Carolina, Chapel Hill. Their studies involve a family with two different mutations responsible for von Willebrand's disease. The heterozygous parents were mild bleeders; their homozygous children severe bleeders.

The investigators conjectured that, if the regulatory hypothesis is valid, both heterozygotes and homozygotes should respond with similar levels of factor VIII synthesis after transfusions of homologous plasma. However, this attractive hypothesis will probably have to be discarded as a result of recent findings by Drs. Emily M. Barrow, C. C. Heindel, H. R. Roberta, and John B. Graham, of the University of North Carolina, Chapel Hill.

Alternative Hypothesis

Having failed this crucial test, the regulatory hypothesis will probably have to be discarded; but the findings may rule out an alternative hypothesis.

Factor VIII

Presumably this regulatory factor is present in the plasma of hemophilic patients. While it does not affect the synthesis of factor VIII, it can correct the basic defect in von Willebrand's disease.

However, this attractive hypothesis may have to be discarded as a result of recent findings by Drs. Emily M. Barrow, C. C. Heindel, H. R. Roberta, and John B. Graham, of the University of North Carolina, Chapel Hill. Their studies involve a family with two different mutations responsible for von Willebrand's disease. The heterozygous parents were mild bleeders; their homozygous children severe bleeders.

The investigators conjectured that, if the regulatory hypothesis is valid, both heterozygotes and homozygotes should respond with similar levels of factor VIII synthesis after transfusions of homologous plasma. However, this attractive hypothesis will probably have to be discarded as a result of recent findings by Drs. Emily M. Barrow, C. C. Heindel, H. R. Roberta, and John B. Graham, of the University of North Carolina, Chapel Hill.

Alternative Hypothesis

Having failed this crucial test, the regulatory hypothesis will probably have to be discarded; but the findings may rule out an alternative hypothesis.

Factor VIII

Presumably this regulatory factor is present in the plasma of hemophilic patients. While it does not affect the synthesis of factor VIII, it can correct the basic defect in von Willebrand's disease.

However, this attractive hypothesis may have to be discarded as a result of recent findings by Drs. Emily M. Barrow, C. C. Heindel, H. R. Roberta, and John B. Graham, of the University of North Carolina, Chapel Hill. Their studies involve a family with two different mutations responsible for von Willebrand's disease. The heterozygous parents were mild bleeders; their homozygous children severe bleeders.

The investigators conjectured that, if the regulatory hypothesis is valid, both heterozygotes and homozygotes should respond with similar levels of factor VIII synthesis after transfusions of homologous plasma. However, this attractive hypothesis will probably have to be discarded as a result of recent findings by Drs. Emily M. Barrow, C. C. Heindel, H. R. Roberta, and John B. Graham, of the University of North Carolina, Chapel Hill.
New Clues Reported to Understanding Of Depression, a Type of Mental Illness

New clues to the understanding of depression, a common type of mental illness, reveal a close tie between some biochemical aspects of the patient and his symptoms. They also point to a pattern of unhappy events that is most likely to trigger severe depressive periods.

The evidence in this regard is supported by Dr. William E. Bunney Jr., a National Institute of Mental Health psychiatrist. Next to schizophrenia, depression covers the largest number of mentally ill persons in the U.S. Its victims make up the majority of the 25,000 Americans who commit suicide each year, Dr. Bunney said.

In a 5-year study of patients whose depressions ranged from mild to psychotic, Dr. Bunney found they usually had normal thinking despite feelings of de- pression, but periodically sank into agonizing spells of derangement. These episodes built up over an average of 15 days and came to a head on what Dr. Bunney calls "the crisis onset day."

Watching for these crises, the researchers carefully kept a record of the patients' daily behavior. Urine was collected around the clock and analyzed for the levels of a product of adrenal hormones (17-hydroxy-corticosteroids) known to be connected with depression and anxiety.

Eighth Cancer Pamphlet Shows Survival Rate Up

Although cancer of the colon and rectum remains the second leading type of malignant disease in the United States, recent studies show that the percentage of patients living at least five years after diagnosis is rising.

This information is included in a pamphlet on "Cancer of the Colon and Rectum" issued last week by the Public Health Service. It is the eighth in a series of 10 pamphlets on different body sites prepared for the general public by the National Cancer Institute.

Survival Rate Improved

The improved survival rate may result partly from an increase in the percentage of patients treated by surgery, according to the pamphlet. Advances in surgical technique and nursing care have made surgery possible for patients who formerly were considered too old, or whose disease was considered too far advanced.

The symptoms, diagnosis, and treatment of cancer of the colon and rectum are also discussed, as well as related conditions and current research. The pamphlet recommends that rectal examination with an instrument called a sigmoidoscope be included in the annual physical check-up of everyone over 40, to help detect tumors early.

Previous pamphlets in the series have dealt with cancer of the breast, uterus, skin, bone, lung, stomach, and larynx.

Single copies of "Cancer of the Colon and Rectum" (PHS Publication No. 13094) are available without charge from the Public Health Service, Washington, D.C. 20201. It may be bought in quantity from the U.S. Government Printing Office, Washington, D.C. 20402, at five cents a copy or $2.75 per 100 copies.

Bartner and Winterrodd To Head New Sections In DRS Reorganization

The Medical Arts Section of the Medical Arts and Photography Branch, Division of Research Services, has been reorganized into two sections—the Medical Illustration Section and the General Illustration Section.

The Medical Illustration Section, headed by Howard C. Bartner, will provide art work in support of biomedical studies at NIH and for

"ALAS POOR YORICK . . .?" No! Ronald Winterrodd and Howard Bartner (left to right), newly appointed Chiefs of the General Illustration and Medical Illustration Sections of the DRS Medical Arts and Photography Branch, are early discussing a future exhibit—Photo by Jerry Hecht.

the distribution of research findings to scientists.

This work will include surgical, pathological, ophthalmological, biological, and dental illustrations; charts and graphs; mechanical illustrations; moulages; and anatomical models.

Ronald B. Winterrodd will be in charge of the General Illustration Section. It will provide illustrations, animation, posters, slide and publication copy, and design of publications and exhibits for disseminating information to the public.

Backgrounds Cited

Mr. Bartner first came to NIH in 1959. He received a B.F.A. and a B.S. degree from Temple University and is a graduate of the Department of Art as Applied to Medicine at the Johns Hopkins School of Medicine, where he is now a part-time instructor in ophthalmological illustration.

Mr. Winterrodd joined the NIH staff in 1960 and is a graduate of the University of Kansas. From 1955 to 1960 he was an officer in the Air Force where he served as a weapons controller.

Earlier this year, the one photographic section of the branch was also reorganized into the Photographic Section and the Motion Picture Section, headed by Vernon E. Taylor and Roy Perry respectively.
Mechanisms of Antigens
In Graft Rejection
Discussed by Dr. Amos

Some of the immunological mechanisms involved in graft rejection were discussed by Dr. Dennis Bernard Amos, Professor of Immunology at Duke University Medical School, in a recent lecture here.

This was the sixth in a series of lectures sponsored by the National Institute of General Medical Sciences and Resources and Research Facilities and Resources to help scientists administrators keep abreast of current trends in the biochemical sciences and genetics.

Dr. Amos stated that for many years scientists doing research in organ transplantation have realized that they were dealing with a genetic problem.

ABO Research Is Extensive

He pointed out, however, that while research into the ABO blood group antigens has been fairly extensive and rewarding, very little is known about the antigens (known as histocompatibility antigens) which play a major role in graft rejection.

Thus, although it is a relatively simple matter to select an appropriate donor and recipient for a blood transfusion, essential information is lacking to match a compatible donor and recipient for a kidney transplant.

Dr. Amos indicated that many of the histocompatibility antigens appear to be located on or near the surface of the white blood cells, or leukocytes.

He referred to studies of sera from pregnant women who had begun to develop antibodies against the fetus in which distinct groupings of leukocyte antigens have been recognized. The role of red cell antigens in graft rejection is less definite.

Defense Mechanisms Suppressed

Due to lack of greater understanding of histocompatibility antigens, present transplantation techniques, he said, depend upon completely suppressing the natural defense mechanisms of the host with drugs or X-rays. While the transplant may "take," the host is left defenseless against bacterial or viral infection.

Dr. Amos suggested that in the future we may be able to use injections of antigen from a donor to create a state of tolerance in the potential recipient so that he will no longer produce antibodies against the transplanted antigen.

This method would theoretically leave the host's natural defense mechanisms intact. Scientists have already produced varying states of antigenic tolerance in animals, but in humans this is a much more difficult problem.

In man it is all too easy, Dr.

METHODS

(Continued from Page 1)

Three Sections Added In OIR Reorganization

The Office of International Research, OD, has been reorganized to include a Nutrition Section, Management Operations Section, and Program Development Section.

The Nutrition Section is composed of the former ICNND Secretary, under the direction of Dr. Arnold E. Schafer. The Interdepartmental Committee on Nutrition for National Development has been terminated and the functions of the Secretariat transferred to the Nutrition Section of OIR.

Dr. Melnick Appointed

Dr. Joseph L. Melnick, Professor and Chairman of the Department of Biology and Epidemiology at the Baylor University College of Medicine, Houston, Tex., has been appointed to the National Advisory Grant Committee for a 4-year term.

This, Dr. Amos suggested, has partly to do with the nature of the antigen and partly with the fact that the kidney drains through the blood vessels, while the skin is in direct contact with both blood and lymph.

PHS Surgeon General Luther L. Terry (left) and Dr. C. K. Himmelstaedt, Director of the Clinical Center, visited the NIH's new exhibit now on display in the lobby, prior to participating in the July 15th annual orientation program for new Commissioned Officers. — Photo by Jerry Hocht.