Jessie M. Scott Named Ass’t Surgeon General, Public Health Service

The promotion of Jessie M. Scott to the rank of Assistant Surgeon General was recently announced by Dr. Jesse L. Steinfeld, Surgeon General of the Public Health Service.

Miss Scott is Director of the Division of Nursing, Bureau of Health Manpower Education. It is the first time in PHS history that Flag Rank has been given to the Director of this Division.

During the past 6 years, Miss Scott has been Educational Director of the American Nurses’ Association, is chairman of its Task Force on Organizational Relations.

Scott designed and operated programs for the support of nursing education and for delivery of safe, effective nursing care.

Her Division also administers grants to students and nursing schools.

Entering the PHS in 1955 as a nurse consultant in the Division of Nursing, Miss Scott served as its deputy chief for 6 years before assuming her present position.

During her tenure, she assisted the PHS with an exploratory project which led to the first federally-supported experimental study of Progressive Patient Care. She also was assigned to three special projects for study and improvement of health services abroad.

Before coming to the PHS, Miss Scott was, for 6 years, assistant executive secretary of the Pennsylvania Nurses’ Association. Earlier she was Educational Director (See MISS SCOTT, Page 4).

Tauraso Appointed Chief Of DBS Virology Lab

Dr. Nicola M. Tauraso has been named chief of the Division of Virology Standards’ Laboratory of Virology and Rickettsiology.

As chief, he is responsible for a program of research on the fundamental aspects of viral and rickettsial infections in relation to vaccine safety, purity, and potency.

Dr. Tauraso graduated magna cum laude from Boston College in 1956, and in 1960 received his M.D. degree from Harvard Medical School.

He was a USPHS Research Fellow at Children’s Hospital Medical Center in Boston from 1960 to 1961. On receiving his commission in the Public Health Service in 1963, he came to NIH as a research associate in NIAID.

The following year Dr. Tauraso joined DBS as a research associate. Dr. Tauraso has been primarily concerned with studies on influenza and yellow fever vaccines. He was the first to isolate and characterize the simian hemorrhagic fever virus, which has caused epidemics of a highly fatal disease among gua­ ranteed monkeys in the U.S., Great Britain, and the USSR.

A diplomate of the American Board of Pediatrics and a fellow in the American Academy of Pediatrics, Dr. Tauraso is active in similar professional organizations as the New York Academy of Sciences, the American Society for Microbiology, and the Society for Experimental Biology and Medicine.

Dr. Tauraso was the first to isolate and characterize the simian hemorrhagic fever virus.

Dr. Julius Axelrod, NIMH Researcher, Shares Nobel Prize With Two Others

Surrounded by colleagues and press photographers, Dr. Julius Axelrod joins in the revelry at an impromptu celebration after receiving word that he had been named co-winner of the Nobel Prize in Medicine or Physiology. Dr. Axelrod is the second Federal scientist to be so honored.

Dr. Julius Axelrod of the National Institute of Mental Health and two scientists from England and Sweden were awarded the Nobel Prize in Medicine or Physiology for their independent research into the chemistry of nerve transmission.

Dr. Axelrod will share the coveted prize, awarded Oct. 15 by the Caroline Institute, Stockholm, with Professor Ulf von Euler of Sweden and Sir Bernard Katz of England.

Dr. Axelrod, chief of the Pharmacology Section in the Laboratory of Clinical Science, NIMH, is the second Federal scientist at the National Institutes of Health to win a Nobel Prize.

The first was awarded to Dr. Marshall W. Nirenberg of the National Heart Institute in 1968.

Prof. von Euler, a former NIH grantee, is chairman of the Nobel Foundation and has been a professor of Physiology at the Royal Caroline Institute for 40 years.

Sir Bernard, professor of Biophysics at University College in London, currently is lecturing at the University of California at Berkeley.

The three eminent scientists were cited by the Caroline Institute for “their discoveries concerning the humoral transmitters in the nerve terminals and the mechanisms for their storage, release, and inactivation. Their discoveries concerning these regulatory mechanisms in the nervous system,” it said, “are found

(Continued on Page 7)

Congratulatory Letters, Calls Inundate Axelrod

Immediately following notification of his award, Dr. Axelrod was deluged with congratulatory messages from friends and colleagues, as well as a phone call and compliment letter from the White House.

In his message to Dr. Axelrod, Dr. Robert Q. Marston, NIH Director, said, in part:

“We are proud that your brilliant investigations have been carried on in the laboratories and clinics on the NIH Bethesda campus.

Work Acclaimed

“Your work has often been singled out for acclaim in the past. This worldwide recognition reflects additional credit upon you personally and upon American science.”

Dr. Marston also sent congratulatory letters to Prof. von Euler and Sir Bernard Katz who share the Nobel Prize with Dr. Axelrod.

“The Nobel Prize, with which your work has been honored, is a

(See LETTERS, Page 7)
Study of Early Pregnancy
Needs Several Volunteers

The Reproduction Research Branch, National Institute of Child Health and Human Development, is seeking as volunteers women who are planning pregnancy.

In order to investigate the hormonal changes of early pregnancy, the investigators find it necessary to study several women during the month in which they become pregnant and for the following 6 weeks. This research will require frequent small blood samples during the first few weeks and less frequent samples thereafter. A fee will be paid for each blood sample.

Those interested in participating should call Dr. M. B. Lipton, Ext. 62138.

Dr. Kreshover Honored
By N.Y. Dental Society

"In recognition of his contribution to the welfare of humanity in the field of dentistry," Dr. Seymour J. Kreshover, Director of the National Institute of Dental Research, received the Henry Spangard Award.

The gold medal and an illuminated scroll were presented to Dr. Kreshover at the recent annual meeting of the First District Dental Society of the State of New York.

Has Over 4,000 Members

The Society—the largest component of the American Dental Association—has a membership of over 4,000 in New York.

Past recipients of the Spangard Award include Dr. William J. Geis, a biochemist noted for his contributions to dental education and research, and Dr. Frederick S. McKay, a pioneer in research on the fluorides for prevention of dental caries.

Marshall Turner Serves
As White House Fellow

Marshall C. Turner, Jr., a former mechanical engineer in DRS, is one of 17 young men and women selected from over 1,000 candidates to serve a one-year residency in Washington as a White House Fellow.

He was assigned last month to the Office of HEW Secretary Elliot L. Richardson.

Mr. Turner entered the Public Health Service as a commissioned officer in 1966. While at NIH, he helped develop a mechanical heart assist device and an environmental testing kit for use in hospitals.

He served until 1968, when he entered Harvard’s graduate school of business.

NIH Television, Radio
Program Schedule

<table>
<thead>
<tr>
<th>Date</th>
<th>Program</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>October 28</td>
<td>Dr. Carl Kupfer, Director, Artificial Heart Program, NIH</td>
<td>Subject: Artificial Heart Program, Part 1 (R)</td>
</tr>
<tr>
<td>November 4</td>
<td>Dr. Frank W. Hastings, chief, Artificial Heart Program, NIH</td>
<td>Subject: Artificial Heart Program, Part 1 (R)</td>
</tr>
</tbody>
</table>

DISCUSSION: NIH
WGM, AM-570—FM Stereo
103.5—Friday, about 9:15 p.m.

October 30
Dr. Alfred S. Ketcham, chief, Surgical Branch, NIH
Subject: Surgical Treatment of Cancer

November 6
Dr. Laurence H. Miller, Dermatology Program director, NIH
Subject: Combatting Skin Disease

Interview takes place during intermission of the Library of Congress concerts.

Publication Lists Grants
To Build Nursing Schools

More than 180 U.S. nursing schools received Federal grants exceeding $80 million to build new educational facilities, or to renovate, extend, and equip their nursing education quarters, according to a publication, Construction Grants Awarded to Schools of Nursing, December 1966-June 1970.

The grantees, listed by state, comprise 51 diploma schools, 49 programs leading to a baccalaureate or higher degree, and 32 leading to an associate degree.

Single copies of the publication are available from the Division of Nursing, NIH.

Trainees Complete Half Of Program to Improve Career Opportunities

Twenty-five employees recently completed the first half of an NIH Clerk-Typist Training Program.

The full-time program consists of 12 weeks of formal classroom instruction and 12 weeks of on-the-job training in various NIH organizations.

It is designed to provide career opportunities for employees in semi-skilled or dead-end jobs.

Richard Seggel, NIH Associate Director for Administration, presented certificates on Oct. 9 to the following trainees:

Eva Lucas, Dilmuter Tillis, Elle Douglas, Charlotte Bryan, Janice Beard, Alberta Jess, Anna Brown, Dorothy Cabou, and Dorothy Coleman.

Other Trainee Listed

Also, Morine Cooper, Queen Cowen, Barbara Brown, Elle Browne, Mary Burroughs, Alice Ferguson, Lila Ingram, and Columbus McCaskill.

Also, Lorene Garland, Phyllis Harrington, Arlene Johnson, Marietta Robinson, Edith Rollins, Josephine Rollins, Rosa Snell, and Erma Moore.

The trainees were selected through the Merit Promotion Program. Their classroom training began July 20 with instruction in typing, office procedures, English, and mathematics.

Classes were conducted by Mariann Fitzner and Hanna Shapiro, teachers from the Adult Education Program, Montgomery County Public School System.

Through the coordinated efforts of Office of Personnel Management staff members, personnel officers, and NIH management officials, the trainees are now beginning the second half of the program. They are working in clerical and typing positions throughout NIH to practice what they have learned in class.

As they progress satisfactorily, they will be given permanent assignments which are likely to lead to advancement to higher grades.
CFC Reaches 72.3% of Goal in Its Latest Report

Federal Register Prints Proposed Regulations For Blood Shipments

Dr. Grundy to Head New Clinical Research Section

NIH Special Foreign Currency Program Described in Brochure

Christmas Comes Early for Framous Edwards

Dr. Grundy specialized in research, teaching and practice in metabolic diseases and gastroenterology.
Dr. Belkin, Administrator
And Scientist at NIH
Since 1947, to Retire

Dr. Morris Belkin, who has been at NIH for 23 years, was recently honored by 60 colleagues and friends at a retirement party.

Dr. Belkin was a scientist administrator in the Research Grants Branch of the National Institute of Neurological Diseases and Stroke. He acted as liaison between the Institute and seven Division of Research Grants study sections: Pharmacology, Experimental Therapeutics A and B, Medical Chemistry A and B, Toxicology, and Endocrinology.

Dr. Belkin's position in the Extramural Programs will be taken by Dr. Lawrence M. Petrucelli, formerly on the staff of the University of Pittsburgh School of Medicine.

Dr. Belkin came to NIH in 1947 to work as a pharmacologist in the National Cancer Institute. His major research interests at that time centered on pharmacology, toxicology, and chemotherapy.

From 1953 through 1961, he served as principal pharmacologist and head of the NCI Cellular Pharmacology Section.

Turns to Administration

In 1961 Dr. Belkin turned to grants administration and became executive secretary of the Cancer Committee in the Special Programs Project of DIB. A year later he joined the staff of NINDS Extramural Programs.

Dr. Belkin was born in the Crimea, Russia. He received his B.A. and M.A. degrees from Harvard University. He then became a biology teacher at Washington Square College, New York University, from 1928 to 1932. Subsequently, he returned to Harvard for his Ph.D.

From 1938 to 1942 he carried out research at Yale University School of Medicine, and in the 4 years following served on the faculty of the South Carolina College of Medicine.

Users' Discuss Computerized System

Developed to Evaluate Laboratory Data

Directors of clinical laboratories from 10 U.S. and Canadian hospitals attended a “Users Conference” on Oct. 22-23 in San Francisco to discuss their experiences with a computerized system to evaluate laboratory data on large numbers of patients.

The system was developed by Dr. George Brecher, Director of Clinical Pathology at the University of California's San Francisco Medical Center and the Berkeley Scientific Laboratories, Inc., with support from the National Institute of General Medical Sciences.

Operating units have been tested nationally in 11 hospitals over the past 12 months, and several more hospital laboratories are soon scheduled to receive prototypes.

NIH convened the conference so that laboratory directors might compare experiences and exchange ideas that might lead to improvements.

Reports indicate advantages over other laboratory data systems now in use. They are:

- Improves patient care by making available to the physician daily summaries of all laboratory work done on patients. This allows him to quickly assess the laboratory data.
- Helps physicians initiate therapy or quickly change required medication. This avoids complications of unattended disease processes and helps shorten periods of hospitalization.
- Reduces by 40 percent the time spent by hospital personnel handling laboratory information. The volume of tests processed has been greatly increased without significant increase in laboratory personnel.

The system is built around a small computer with a specially modified disc device that enlarges and speeds data storage beyond the capacity of ordinary storage units.

At numerous entry points, the system reads instruments automatically, and at others the interface is through laboratory data consoles and machine reading mechanisms. The system is adaptable to hospitals of all sizes.

During the past year, the system has been operating at the Clinical Center, University of California Medical Center, San Francisco; Presbyterian-St. Luke's Hospital, Chicago; Upjohn Clinical Laboratories, Kalamazoo, Mich., and the U.S. Public Health Service Hospital, Baltimore.

Also, St. Vincent's Hospital, Portland, Ore.; Meyer Memorial Hospital, Buffalo, N.Y., and Meriden Hospital, Meriden, Conn.

The system is also in operation at Metropolitan Pathology Laboratory, Teaneck, N.J.; Medical University of South Carolina, Charleston, and Harrisburg Hospital, Harrisburg, Pa.

Dr. F. E. Fick, III, program director for Biomedical Engineering, and Robert S. Melville represented NIH at the Users Conference. Berkeley Scientific Laboratories was represented by Dr. W. H. Wattenburg, president of the firm.
Double-Stranded, Virus-Like RNA Found In Normal as well as in Diseased Cells

A type of RNA believed to exist only in viruses has now been found in normal human and animal cells as well as in diseased cells. Two NIH scientists found this double-stranded RNA and think it may be part of the cell's normal machinery.

Dr. Robert Stern, National Institute of Dental Research, and Dr. Robert M. Friedman, National Cancer Institute, made this discovery. Previously, scientists believed double-stranded RNA was characteristic of RNA viruses and that normal cells contained only single-stranded RNA.

In this study the investigators report finding small amounts of the double-stranded virus-like RNA (2 percent of the total RNA) in cells from normal and diseased humans and animals and even from germ-free chick embryos.

RNA or ribonucleic acid, one of the master chemicals found in all living cells, is involved in the cell's production of proteins. Until recently it was believed that RNA carried out this role only upon orders from DNA (deoxyribonucleic acid) which contains the blueprints for a living cell's heredity.

Originally, Drs. Stern and Friedman examined cells from patients with Burkitt's lymphoma to explore the possibility that an RNA virus might be involved in the disease. After they found the viral-like RNA in these cells, they looked for control cells from such sources as healthy individuals and germ-free chick embryos. They found, however, that all the cells contained the double-stranded RNA.

To help them differentiate between viral RNA and cellular RNA, the scientists also studied the Semliki Forest virus, a known RNA virus. They succeeded in separating the virus at all stages of its reproductive cycle from within infected animal cells.

In their search for cells lacking the double-stranded RNA, the investigators treated all the cell preparations with actinomycin D, an antibiotic which prevents cells from manufacturing single-stranded RNA. They found that a viral-like RNA synthesis persisted in all cells after this treatment.

This viral-like RNA that remained also was present in cells treated with RNase, an enzyme which breaks down single-stranded RNA.

The scientists found that this remaining double-stranded RNA had many properties in common with the RNA found in viruses.

They theorize, therefore, that eons ago the double-stranded RNA may have had a viral origin but that it has adapted so completely to parasitic life that it cannot exist outside of a cell.

This viral-like RNA may actually be passed from one generation to the next in the egg or sperm. It may perform some needed cell function, or it may be a latent virus or "oncogene" which after years or generations of inactivity is somehow triggered to reproduce and cause disease.

If this material is an "RNA gene" which can cause disease, then, the scientists theorize, there may be a continuum instead of a sharp distinction between genetic and infectious disease.

Dr. Stern and Dr. Friedman reported their findings in a recent issue of Nature.

Other recent NIH-supported studies (by Dr. Howard M. Temin and others—see The NIH Record, July 21, 1970) suggest that RNA viruses contain an enzyme that can use RNA as a blueprint to synthesize DNA.

This is a reversal of the channeling of genetic information in which DNA is the blueprint and RNA, the messenger and transfer mechanism in the synthesis of proteins.

NIDR investigator Dr. Robert Stern (l) examines data with biologist Marlene Gaulmound as Dr. Robert M. Friedman, NCI, adjusts equipment.

NHLI Employees Share A Superior Performance Group Award for Survey

Seventeen members of the NHLI Training Grants and Awards Branch and the Clerical Unit, Analysis and Reports Section, shared a group award for superior performance totaling $1,000.

Individual awards, from $45 to $75, were presented to 13 of the recipients on Oct. 13 by Dr. Theodore Cooper, Director of the National Heart and Lung Institute.

The group's outstanding performance in making a comprehensive follow-up survey of all individuals who have received training grant or fellowship support from the Institute over the past 20 years was cited.

Survey Helps Evaluation

The survey, designed to help the Institute assess the worth and impact of its training activities, required 17 months.

The group worked more than 3,000 hours of overtime on the survey—obtaining and recording more than 10,000 current addresses; mailing and processing over 15,000 letters, and preparing some 50,000 punch cards and 40,000 code sheets.

It is anticipated that the final report will prove valuable as an historical document as well as a data base for formulating new directions for NHLI training-support programs.

Awardees Named

Recipients from the NHLI Training Grants and Awards Branch were Barbara Bennett, Faith Brammer, Geraldine Leser, Linda Pollard, Donna Rosenberg, and Linda Russell.

The Analysis and Reports Section awardees were Phyllis Adams, Carol Brummer, Lourdes Doherty, Marcia Farahpour, Louise Fletcher, Denise Johann, Bonita Keiser, Loreta Prince, Molly Schlonsky, Barbara Shepler, and Rose Schreiber.

Dr. Theodore Cooper, NHLI Director, presented superior performance awards to these employees—part of the 17 who worked more than 3,000 hours overtime for a follow-up survey of training grantees and fellows receiving Institute support in the past 20 years.
Need to Integrate Basic, Clinical Epilepsy Studies Stressed at Workshop

"A most important aspect of research into the control of epilepsy is an integration of basic and clinical studies into centers devoted to patient care," Dr. Edward F. MacNichol, NINDS Director, said in his keynote address at the Epilepsy Foundation's Third Annual Workshop recently.

The workshop, "Epilepsy: Challenge of the Seventies," was held in Washington, Oct. 15-17.

Three other National Institute of Neurological Diseases and Stroke representatives: Dr. J. Kiffen Penry, head of the Special Projects Branch, Collaborative and Field Research; Dr. James Cereghino, a staff neurologist with the branch and Ruth Dudley, Institute information officer, participated in panel discussions.

Others Participate

Joining the NINDS speakers were representatives from voluntary, private, and Government agencies conducting research and providing services to the more than 4 million Americans suffering from convulsive disorders.

In his address, Dr. MacNichol described the Institute's extramural and intramural programs concerned with epilepsy and work at five Epilepsy Research Centers.

At these centers, researchers are conducting environmental and behavioral studies, investigating the electrical manifestations of seizures through chemical means, and determining the differences between normal and epileptic brain cells.

Some of the most important areas, according to Dr. MacNichol, are studies to investigate the role viruses, genetic factors, and perinatal and birth deficiencies may play in the etiology of epilepsy.

In addition, basic studies continue to define the electrical and chemical activity of nerve cells in the brain.

When discussing drug research, Dr. MacNichol spoke of the work by NINDS and its grantees to accurately monitor the number of seizures and duration of seizures of epileptics in order to quantitatively measure the effectiveness of anticonvulsive drugs.

In the panel discussion, Dr. Penry described drug testing programs in greater detail.

Two major problems, according to Dr. Penry, are quantitative measuring of the patient's response to a given drug, and methods of measuring the precise levels of anticonvulsives in the patient's blood.

Dr. Cereghino's discussion centered on identification of existing resources and services for epileptics. A series of surveys from the entire country, Dr. Cereghino said, pointed out critical needs: increased employment of epileptics, improvement in out-patient services, education of persons teaching epileptics, and increased understanding of the epileptic's capabilities.

Mrs. Dudley, who participated in the public information and education sessions of the workshop, described methods of reaching and educating the public about this often misunderstood disorder.

Clinical Research Team at MIT Develops Method of Diagnosing Diseased Arteries

A simple non-invasive method of diagnosing diseased arteries has been developed by a team of researchers at the Massachusetts Institute of Technology's General Clinical Research Center.

The Center is supported by the Division of Research Resources.

Dr. Robert S. Lees, director of the Clinical Research Center, and Professor C. Forbes Dewey, Jr., an engineer in the Department of Mechanical Engineering at MIT, described the process in a paper published in the October Proceedings of the National Academy of Sciences.

The new technique, phonangiography, employs the basic principle of a stethoscope. Instead of listening to heart sounds, though, the investigator listens to the sound of blood flowing in a patient's arteries.

When blood flows through a normal artery, no sound is produced. Blood flowing through an artery narrowed by atherosclerosis is interrupted and becomes turbulent, thus producing sound.

"Researchers have known of this sound for years," Dr. Lees said, "but until now, few doctors have tried to quantify it."

Medical investigators in MIT's 12-bed Clinical Research Center found that the turbulent sounds produced by the narrowed arteries could be detected with a sensitive microphone. The loudest sounds were detected adjacent to the area where the artery was narrowed.

By recording and analyzing the sound, researchers can plot the frequency and intensity of the sound of blood rushing through the narrowed artery.

With a fluid mechanical theory developed by Professor Dewey, the clinical team can then estimate the extent of narrowing at the site of the sound.

Works Close to Surface

At this time, phonangiography works only in arteries close to the surface of the skin. The sound from deeply buried arteries is too diffused by intervening layers of tissue to be of use by the time it reaches the surface.

"One of the great advantages of phonangiography is that the technique is non-invasive," Dr. Lees pointed out.

At present, direct assessment of the state of arteries requires the threading of catheters into arteries and injection of an X-ray dye to show narrowing.

"Direct assessment by catheterization is uncomfortable for the patient, sometimes requires general anesthesia, and involves the risk of infection and bleeding," he added.

Both Professor Dewey and Dr. Lees said they plan to continue their work with additional patients at the Clinical Research Center.

They hope to refine the technique so that detection and measurement of narrowed arteries deep within the body will be possible.

Proceedings Give Recent Progress in Methods of Measuring Bone Minerals

Proceedings of the third and most recent conference on bone measurement, "Methods of Bone Mineral Measurement," have been published by the National Institute of Arthritis and Metabolic Diseases.

Editors of the publication are Dr. G. Donald Whedon, Director of NIAMD, and Dr. John R. Cameron, associate professor of Radiology and Physics, University of Wisconsin, Madison.

The conference brought together researchers from such diverse disciplines as orthopedics, nutrition, endocrinology, radiology, and environmental space science.

All are working on more sensitive and accurate tools to measure the mineral content and density of the human skeleton, specifically the degree of change in bone brought about by various agents and stresses.

First Meeting Held in 1959

The first meeting to stimulate interest in this field, held at NIH in 1959, was followed 6 years later by a second bone densitometry conference at the NASA headquarters in Washington, D.C.

NASA was interested in examining the possibility of bone mineral loss in space flights of long duration. Such a derangement had been predicted on the basis of ground immobilization studies as the nearest simulation to weightlessness.

The 25 papers in the current proceedings focus on four subjects in developing a cumulative progress in development, definition, and refinement of bone measurement tools: Measurements from X-Ray Source Images, Measurements by Gamma-Ray Sources, Measurements of Bone Structure by X-Ray and by Pathologic Techniques, and Measurements by Novel Techniques.

Short discussions and references follow each topic.

The 579-page publication is free upon request to researchers working in the field.
What Began as a Quiet Day Turns Into Hectic But Rewarding Event

The morning of Thursday, Oct. 15, appeared normal enough. About 8:30 a.m., however, a wire service story out of Stockholm announcing the winners of the 1970 Nobel Prize in Medicine or Physiology changed it all.

Radio broadcasts spread the word of Dr. Julius Axelrod's honor quickly. By 8:45, Dr. Bertram Brown, Director of NIMH, had been on the phone with the Associate Director for Mental Health Research.

The machinery was set in motion for a noon press conference, and a search for Dr. Axelrod began.

Contrary to his usual practice of arriving at the lab early each morning, Dr. Axelrod was nowhere to be seen. His secretary reported being on the phone with the Association for Mental Health and was not expected to be seen. His secretary reported that he had scheduled an early dental appointment and was not expected to be seen.

In the office before 10 a.m.

Following a cup of coffee at a nearby drug store, Dr. Axelrod entered his dentist's office, unaware of the excitement. When told of the prize he remained skeptical until called to the phone to respond to the inevitable query from a local radio station, "What is your reaction to winning the coveted Nobel Prize?"

When he entered his Clinical Center laboratory, dozens of co-workers and fellow scientists were waiting to congratulate him. Soon photographs from the wire services appeared. Then network television. And the telephone lines remained busy.

There was an air of excitement in the 13th floor conference room at the Barlow Building as plans for the press conference were completed. Television cameramen and film crews made last-minute checks on equipment.

Each reporter was given a brief biographical sketch, information about Dr. Axelrod's research, and photographs. Review of the videotape of the press conference with its rapid-fire questions and good-natured answers were played in Barlow Building conference rooms throughout the afternoon.

During a luncheon with colleagues and members of the NIMH Director's staff, phone calls and messages from well-wishers continued to pour in.

When Dr. Axelrod arrived home in the late afternoon, he was congratulated by his wife who had been in Baltimore attending a Maryland state teachers conference.

During one of the rare lulls, the telephone rang and a feminine voice announced: "This is the White House calling for Dr. Julius Axelrod."

President Cells

After a short wait the President came on the line, congratulated Dr. Axelrod and discussed for several minutes the research that had brought the award, NIMH research in general, and some of the economic problems facing medical scientists.

Calls from his two sons who are away at college, more messages from relatives and friends, and reporters looking for a different angle or more information continued through the evening.

It was a day to remember.

Conference in Australia To Acquaint Biochemists With U.S. Automation

Dr. J. H. U. Brown, associate director, National Institute of General Medical Sciences, will chair a 2-day conference on Instrumentation and Automation in Biochemistry Nov. 9-10 in Sydney, Australia. The meeting is being organized by the Australian Government and the U.S. Department of Commerce to acquaint engineering and biochemical workers in Australia with the latest American developments in laboratory instrumentation and automated analytical systems.

Opening speakers for the conference will be the U.S. Ambassador to Australia, Walter L. Riese; Secretary Alan Westerman of the Commonwealth's Department of Trade and Industry, and the Minister for Health, State of New South Wales, A. H. Jago.

Grantees Listed

Grantees of the NIGMS automation of clinical laboratories research and training program who are participating include:

- Dr. George Brocher, Director, Clinical Pathology, University of California San Francisco Medical Center—Computer Control of Analytical Processes.
- Dr. Evan Horning, professor of Chemistry and Director, Institute of Lipid Research, Baylor College of Medicine—Gas Chromatographic Analysis.

Dr. Brown

his father in 1967 shared the $50,000 Stouffer Prize with three other scientists for contributing to the understanding of high blood pressure and hardening of the arteries, and that his grandfather, Hans von Euler, shared the Nobel Prize for Chemistry in 1929.

LETTERS

(Continued from Page 1)

high tribute to you and to the research being done daily in the National Institute of Mental Health and the other health agencies of the Federal Government," HEW Secretary Richardson wrote.

"Your research holds, I believe, great promise for the future health of Americans and the people of the world. Ever since the birth of the country, the pursuit of Health, Education, and Welfare is proof that the Nobel Prize has been awarded to a dedicated colleague."

Dr. Axelrod pauses for a refresher during the hectic moments between celebrations and press conferences.

Dr. JULIUS AXELROD, NIMH, SHARES NOBEL PRIZE

(Continued from Page 1)

receive their awards from King Gustaf Adolf of Sweden at ceremonies to be held Oct. 10 in Stockholm.

Since 1931, 46 scientists who have received support from the NIH and its predecessors have won Nobel Prizes in their fields. Dr. Axelrod came to the NIH in 1949 as a biochemist with the National Heart Institute. In 1955 he transferred to the National Institute of Mental Health to assume the directorship of the Biological Psychology Branch.

He received his B.S. degree from the City College of New York in 1933, and his M.S. degree in 1941 from New York University. He earned his doctorate in Chemical Pharmacology in 1955 from the George Washington University.

Affiliations Noted

Dr. Axelrod's professional affiliations include membership in the International Brain Research Organization, the American Association of the Advancement of Science, American Chemical Society, American Society for Pharmacology and Experimental Therapeutics, and American Society of Biological Chemists. He also is corresponding member of the German Pharmacological Society.

Among other honors accorded Dr. Axelrod have been the Modern Medicine Distinguished Award for 1970, the HEW Distinguished Service Award (1970), and the Gardiner Foundation Award (1967).

Von Euler, Former NIH Grantee, Has Scientist Son With the NIGMS

One of the 1970 recipients of the Nobel Prize in Medicine or Physiology, Professor Ulf Svante von Euler of the Karolinska Institute in Stockholm, has especially close ties with the National Institutes of Health.

Not only is Professor von Euler among the 46 winners of the world's foremost scientific award to have received research support from the NIH—he was a grantee of the National Institute of Neurological Diseases and Blindness from 1950 to 1965—but he also has a son who is a scientist at NIH.

Dr. Leo H. von Euler is chief of the Medical Sciences Section, Research Training Grants Branch, National Institute of General Medical Sciences.

Dr. von Euler first heard that his father had been awarded the 1970 Nobel Prize in Medicine or Physiology while attending a conference in Vermont.

"Naturally" he said, "I was delighted for him, very proud that his studies on the physiology of nerve impulse transmission had been singled out by the Nobel Committee for this great honor."

Dr. von Euler also recalled that

text is not directly transcribed, but the instructions provided seem to be about highlighting or marking specific sections of a document.