Dr. Reuben Andres Given Gerontology Soc. Prize

Dr. Reuben Andres, National Institute of Child Health and Human Development, is the 1974 winner of the Gerontological Society's prestigious Robert W. Kleemeier Award.

Named assistant chief of the Gerontology Research Center, and chief of GEC's Clinical Physiology Branch, Dr. Andres was recognized for his contributions to aging research.

Dr. Andres received the honor at the society's 27th annual meeting held recently in Portland, Ore.

He was honored for his commitment to clinical research on (See DR. ANDRES, Page 6)

In 1973, Dr. Andres was given a DHEW Superior Service Award for his research contributions.

Dr. Paul Schmidt Wins Cooley Memorial Award

Dr. Paul J. Schmidt, chief of the NIH Blood Bank since 1965, is also clinical professor of pathology at the Georgetown University School of Medicine.

Dr. Paul J. Schmidt, CC Blood Bank Chief, will deliver the Cooley Lecture at the American Association of Blood Banks meeting Nov. 11, in Anaheim, Calif.

The award is presented annually to recognize scientists for outstanding contributions in blood banking and blood transfusions.

Dr. Schmidt has conducted extensive research in clinical pathology and blood transfusions. His widely published work has been applied to practical hospital blood banking and transfusion procedures.

His investigations on posttransfusion hepatitis over the past 10 years opened the path for definitive studies on the roles of commercial donors and of hepatitis antigens in that disease.

His lecture, Transfusions in Historical Perspective, will trace the effectiveness of a vaccine to prevent bacterial meningitis caused by group A meningococcus. The vaccine will be tested in young children in Finland under contract recently awarded by the National Institute of Allergy and Infectious Diseases.

Dr. Christian de Duve, Nobel Laureate, Speaks on Campus Nov. 19

Dr. Christian de Duve, Nobel prize winner, will speak at a seminar Tuesday, Nov. 19, at 11 a.m. in the Masur auditorium.

He will discuss The Relationship of Lysosomotropic Agents to Cancer Chemotherapy. The seminar is sponsored by the Laboratory of Experimental Chemotherapy, NCI.

The laureate, an NIH grantee, shared the Nobel Prize for Medicine or Physiology, with Dr. George Emil Palade and Dr. Albert Claude. They were cited for being "largely responsible for the creation of modern cell biology.

Dr. de Duve is conducting research at Rockefeller University and at the University of Louvain in Brussels. He is a NICHD grantee and heads a program on mechanisms of cellular aging and degeneration.

Effectiveness of Vaccine For Bacterial Meningitis To Be Tested in Finland

Study on Patients With CVH Deficiency Helps to Explain Body's Immunization

National Cancer Program scientists have discovered the cause of a rare immune-deficiency disease that sometimes leads to cancer, and in so doing have uncovered new information on the workings of the body's system of defenses against many diseases.

For several years, Dr. Thomas A. Waldmann and his colleagues in the National Cancer Institute have studied patients, mostly children, with a life-threatening disease, common variable hypergammaglobulinemia, characterized by the patient's inability to make protective antibodies.

Fifty patients with CVH have been treated in the NIH Clinical Center. All had recurrent severe infections, particularly pneumonia, and other long diseases. Arthritis develops in 30 percent and cancer in 10 percent.

The investigators studied T-cells, white blood cells that originate in the bone marrow and migrate through the thymus (T) gland before becoming active immune agents (see illustration on page 8).

Find Excessive T-cells

Experiments showed that CVH patients' immune defect was due to an excess of "suppressor" T-lymphocytes.

Another subgroup, "helper" T-cells, assists mature B-cells in antibody production. Excessive "suppressor" T-cells in CVH patients prevent their B-cells from maturing into fully competent antibody producing B-cells, Dr. Waldmann concluded. This defect makes CVH patients vulnerable to infections and other diseases.

The scientists grew laboratory cultures of lymphocytes from 13 patients with CVH and found that, despite chemical stimulation, they produced from 16 to 37 times fewer antibody molecules of each of 3 important classes (IgG, IgA, and IgM) than lymphocytes from normal individuals under the same conditions.

Moreover, during repeated cell culture tests, B-cells from normal persons produced 8 to 10 times fewer antibodies when lymphocytes from CVH patients were added to the cell cultures.

Co-culturing of normal cells from unrelated normal individuals did not result in any significant findings.

(Continued on Page 8)
Morrison Rogosa Retires, but Only From 38 Years Of Federal Service; to Continue With His Research

After 38 years of Federal service, Morrison Rogosa, National Institute of Dental Research, is retiring, but that will not stop him from continuing his research activities. Mr. Rogosa is a microbiologist at the National Institute of Dental Research.

He began his career in 1938 as a bacteriologist with the Department of Agriculture. Among his contributions there was the development of the first bacteriophage method for microassay of a metal and the first experiments leading to the microbiological assay and eventual isolation of vitamin B12.

In 1948, he joined the Dental Research Section of NIH's Experimental Biology and Medicine Institute. When NIDR was established the next year, Mr. Rogos was one of the 30 persons comprising the nucleus of investigators on the staff.

Organizes Lab of Eastman

One year later, Mr. Rogosa was assigned by NIDR to organize and maintain a field laboratory at the Eastman Dental Center, Rochester, N.Y.

Because of his background with the lactic acid group of microorganisms — including lactobacilli and streptococci which are important in the dental field — Mr. Rogosa was selected in 1958 to collaborate as a visiting research professor with the National Institute for Research and Dental Research at the University of Rüden in England.

The 18 months he spent abroad resulted in benefits extending beyond dental research — his studies with lactobacilli contributed new knowledge in such areas as dairy science, animal and poultry nutrition, food production and spoilage, and vitamin research.

Mr. Rogosa is the author of more than 50 papers concerning his research on the classification and arrangement of hundreds of bacterial strains comprising all known lactobacilli, as well as some new genera and species he discovered.

Serves as Editor

He has served as an editor of the American Journal of Bacteriology and as a contributor and advisory chairman for Bergen's Manual of Determinative Bacteriology.

Mr. Rogosa will continue his studies, including a research project with the American Type Culture Collection and as chairman of the International Committee on Oral Microbiology and Immunology.

He is also expected to keep up his interest in literature and to become an even more frequent attendant of plays and concerts in the Washington area.

Lab Safety Training

Course Begins in Dec.

The Office of Research Safety of the National Cancer Institute and the NIH Biohazard Committee will sponsor a laboratory safety training course—Principles of Biohazard and Injury Control for the Biomedical Laboratory—from Dec. 10-12, in Bldg. 31, Conference Room 10 (C Wing, 6th floor).

The course, conducted by the University of Minnesota School of Public Health, will instruct professional laboratory research personnel in basic principles of laboratory safety and contamination control.

Lectures include the history of laboratory-acquired infections, an assessment of biohazards in biomedical research, and the use of biological safety equipment.

Animal containment methods, disinfection and sterilization procedures, and control methods for physical, chemical, and radiological hazards will also be discussed.

Registration deadline is Nov. 30. Send name, position, laboratory, building and room number to the Office of Research Safety, Bldg. 41, Room A-114, or call Ext. 60098.

Return All Tote Boxes

Materiel Management in the Division of Administrative Services has requested that after supplies have been removed, delivery containers — tote boxes — be returned to the Central Storeroom.

The boxes should not be used as receptacles for other office equipment or trash.

In Bldg. 10, the empty tote boxes may be deposited at the elevator closest to the employees’ office. From there, the boxes will be returned to the storeroom. For pickup service in other buildings on or off the reservation, call Ext. 62284 or 66028.

Materiel Management has also pointed out that tote boxes are expensive to replace — each box costs $20 — they are used only for transport supplies from the Central Storeroom to B/1/1 offices.

Employees May Restore Leave Under New Law

If employees have not used annual leave in excess of the maximum carryover balance — 240 hours, or more if authorized — because of administrative error, illness, or demands of their work then such leave may be restored.

Generally, excess annual leave is forfeited if not used by the end of the leave year, which at NIH is Jan. 4, 1975. However, the recently enacted Public Law 93-181 provides that such forfeited leave may be restored under certain circumstances.

In order to restore excess annual leave which otherwise would be forfeited, employees must submit in writing no later than Nov. 30, 1974, a schedule for taking excess leave.

Questions relating to leave restoration will be answered by B/1/D personnel offices.

Dr. Reingold from Smithsonian Speaks to Medical History Soc.

The Washington Society for the History of Medicine will meet Thursday, Nov. 14, at 8 p.m., in the Williams Auditorium at the National Library of Medicine.

Dr. Peter H. Niebyl from the Institute of the History of Medicine, Johns Hopkins University, will discuss W. H. Welch-A Pioneer in Medical Research.

He has served as an editor of the American Journal of Bacteriology and as a contributor and advisory chairman for Bergen’s Manual of Determinative Bacteriology.

Mr. Rogosa will continue his studies, including research with the American Type Culture Collection and as chairman of the International Committee on Oral Microbiology and Immunology.

He also expects to keep up his interest in literature and to become an even more frequent attendant of plays and concerts in the Washington area.

Employers May Restore Leave Under New Law

If employees have not used annual leave in excess of the maximum carryover balance — 240 hours, or more if authorized — because of administrative error, illness, or demands of their work then such leave may be restored.

Generally, excess annual leave is forfeited if not used by the end of the leave year, which at NIH is Jan. 4, 1975. However, the recently enacted Public Law 93-181 provides that such forfeited leave may be restored under certain circumstances.

In order to restore excess annual leave which otherwise would be forfeited, employees must submit in writing no later than Nov. 30, 1974, a schedule for taking excess leave.

Questions relating to leave restoration will be answered by B/1/D personnel offices.

Dr. Reingold from Smithsonian Speaks to Medical History Soc.

The Washington Society for the History of Medicine will meet Thursday, Nov. 14, at 8 p.m., in the Williams Auditorium at the National Library of Medicine.

Dr. Peter H. Niebyl from the Institute of the History of Medicine, Johns Hopkins University, will discuss W. H. Welch-A Pioneer in Medical Research.

He has served as an editor of the American Journal of Bacteriology and as a contributor and advisory chairman for Bergen’s Manual of Determinative Bacteriology.

Mr. Rogosa will continue his studies, including research with the American Type Culture Collection and as chairman of the International Committee on Oral Microbiology and Immunology.

He also expects to keep up his interest in literature and to become an even more frequent attendant of plays and concerts in the Washington area.

Some years ago, the American pianist, Murray Perahia, who appeared in the 1972-73 Chamber Music Series, will return to NIH on Nov. 17.

The concert, to be held in the Masur auditorium at 4 p.m., will include selections by Haydn, Schumann, and Chopin.

Admission is by ticket only.

Lab Safety Training Course Begins in Dec.

The Office of Research Safety of the National Cancer Institute and the NIH Biohazard Committee will sponsor a laboratory safety training course—Principles of Biohazard and Injury Control for the Biomedical Laboratory—from Dec. 10-12, in Bldg. 31, Conference Room 10 (C Wing, 6th floor).

The course, conducted by the University of Minnesota School of Public Health, will instruct professional laboratory research personnel in basic principles of laboratory safety and contamination control.

Lectures include the history of laboratory-acquired infections, an assessment of biohazards in biomedical research, and the use of biological safety equipment.

Animal containment methods, disinfection and sterilization procedures, and control methods for physical, chemical, and radiological hazards will also be discussed.

Registration deadline is Nov. 30. Send name, position, laboratory, building and room number to the Office of Research Safety, Bldg. 41, Room A-114, or call Ext. 60098.

Return All Tote Boxes

Materiel Management in the Division of Administrative Services has requested that after supplies have been removed, delivery containers—tote boxes—be returned to the Central Storeroom.

The boxes should not be used as receptacles for other office equipment or trash.

In Bldg. 10, the empty tote boxes may be deposited at the elevator closest to the employees’ office. From there, the boxes will be returned to the storeroom. For pick-up service in other buildings on or off the reservation, call Ext. 62284 or 66028.

Materiel Management has also pointed out that tote boxes are expensive to replace—each box costs $20—they are used only for transport supplies from the Central Storeroom to B/1/D offices.
Dr. Gwadz and His Insectary Are Now at NIAID; Continues Studies on Vectors of Human Malaria

World travel has made the control of malaria, one of the chief killers of mankind, vitally important to the entire world and not just to those endemic areas in Southeast Asia and Africa where over one billion people live.

That is why the studies of Dr. Robert W. Gwadz, National Institute of Allergy and Infectious Diseases, on the mating behavior of mosquitoes in the new NIAID insectary—a place for insects used in research—is deemed so important.

Dr. Gwadz, who is with NIAID's Malaria Section, Laboratory of Parasitic Diseases, was formerly with the Institute's Primate Malaria Unit in Chamblee, Ga.

On the campus, he is continuing his research on the genetics of certain breeds of mosquitoes and their capacity to transmit malaria to humans.

Since two of the major species that Dr. Gwadz is studying—Anopheles balfourii and A. maculatus—will not mate in captivity, they must be force mated by scientists using a technique developed by Dr. William E. Collins who is on the staff of the Center for Disease Control in Atlanta. Dr. Collins had been head of the former unit in Chamblee.

The long range goal of Dr. Gwadz' further studies at NIAID is to achieve a biological method for controlling the Anophelinae mosquitoes which transmit human malaria.

Researchers have found that the ability in the mosquito to transmit filaria and chicken malaria is genetically controlled.

If the ability to transmit malaria is also under simple genetic control, one could develop, through selective breeding, stocks of mosquitoes completely resistant to the parasite.

These mosquitoes could then be released in areas where malaria is endemic, and, in time, replace the population of transmitters, thus eliminating malaria without upsetting the area's ecology.

A number of problems are associated with methods for controlling malaria. Concern over the long-term presence of DDT in body tissues has limited its use in mosquito eradication.

In addition, mutations have pro-

(See DR. GWADZ, Page 7)

Dr. Gwadz performs radical brain surgery, impaling a male on a needle and removing the head. The nerve center which controls the mating instinct is located in the head and removal releases the male mosquito's inhibitions. Two vectors of malaria in Southeast Asia will not mate in captivity; to maintain these species, Dr. Gwadz relies on forced mating. This technique was developed by Dr. Collins.

Although some males have already lost their heads, each of them is ready to impregnate a female. A female mosquito—it is first anesthetized—can only be impregnated once. The optimum mating age for the female is 4 days while that of the male is 8 days. The female of the species is in the background.
The University of California at Los Angeles Health Sciences Computing Facility is developing new statistical and mathematical approaches to help biomedical scientists meet today's requirements for handling information.

By outward appearances it is a quiet place, but behind the facade the facility—supported by the Biotechnology Resources Branch of the Division of Research Resources—is the scene of an exciting effort to bring the researcher as close as possible to mathematics, statistics, and computers.

As today's scientists realize, human physiology has an infinite number of variables, and one of the constant needs in medical research is an automated approach to analysis of scientific data.

Dr. M. Anne Spence (left) is one of the few U.S. geneticists experienced with computers. She is trying to identify how specific genetic mechanisms, including chromosome examination, relate to various illnesses.

She is studying the ridge systems at the base of each finger and the dermal ridges of the fingertips to measure genetic traits, including new genetic markers for autism as well as other diseases.

Dr. Carol M. Newton (above) has developed computer programs to support radiation treatment planning and to aid in understanding the mechanism of the body's cellular system. She developed the computer simulated model (upper right) to allow the therapist to experiment in the computer with different doses for maximum effect on uterine cancer.
Dr. Wilfred J. Dixon, Director of the UCLA facility, conceived the idea of a health sciences computer center when he came to UCLA in 1955. He gradually built up a team and reported his ideas to NIH. A pioneer group was funded by DRR in 1962. The center’s huge IBM 360/91 computer works in a number of ways for many scientists throughout the world.

The facility’s Biomedical Computer Programs were developed to meet the needs of researchers who are not computer experts. Another development is the terminal support system that enables the scientist to converse with the computer from a terminal in his office or laboratory.

A booklet on the UCLA Center has been produced by the DRR Office of Science and Health Reports. Free copies are available from that office to NIH Record readers.

Dr. Paul Terasaki’s research is based on the fact that the better the doctor’s ability to match antigens, the better the transplanted organ is accepted by the recipient.

His laboratory developed the standardized typing trays which have led to uniformity of tissue typing among various laboratories.

He is using computer analysis for the classification of sera and the typing of subjects in terms of their transplantation antigens.

Each year his laboratory types nearly 15,000 subjects, including prospective transplant donors, recipients, and patients whose diseases involve transplantation antigens, and the file can be searched for suitably matched recipients in a matter of seconds.
Anesthesiology Studies Reviewed in Workshop

Researchers at an Anesthesiology Research Workshop sponsored by the National Institute of General Medical Sciences, held here recently, concluded that the excellence and productiveness of basic studies in anesthesiology have grown markedly in recent years.

Research on the effects of anesthesiology agents on the structure and function of the brain as well as the nervous system were said to be progressing well. Knowledge derived from these studies would have profound implications for the development of new anesthetics and their safer administration.

However, strong concerns were expressed that medical technology in the areas of anesthetic administration and monitoring has, in general, not advanced appreciably over the past 25 years. This poses an urgent challenge for a concerted interdisciplinary effort between anesthesiologists and biomedical engineers.

A need for much better epidemiologic data on the morbidity and mortality associated with anesthesiology procedures was also stressed.

There was apprehension that anesthesia research may be suffering from an increasingly critical shortage of well-trained investigators.

Dr. Ruth L. Kirschstein, NIGMS Director, welcomed the participants to the first major NIGMS research workshop that has been held since she was appointed Director.

Mr. Tarpley, born in Greensboro, N.C., joined the Federal Government 20 years ago as a messenger with the Armed Forces Institute of Pathology.

A graduate of the Agricultural and Technical College in Greensboro, he received his M.A. in history from Howard University in 1954, and the following year came to NLM as an editorial clerk.

In his most recent post, Mr. Tarpley was one of two unit heads in the Index Section. He trained and supervised analysts of biomedical literature and maintained liaison with libraries of several foreign scientific institutions.

He was active in NLM's EEO program, serving for 2 years as chairman of the committee which developed its EEO Affirmative Action Plan, and in December 1973 received an award in recognition of his work on the committee.

He is survived by his wife, Mozelle; a son, Harold L. Jr., and a daughter, Joyce, of the home address in Rockville; the Rev. and Mrs. Isadore Tarpley and two sisters residing in Greensboro, and a brother, John, of Rockville.
VACCINE

(Continued from Page 1)

tis has not been very common in the United States in the past few decades. However, sporadic cases of this potentially epidemic disease do occur each year in this country and Canada.

Current meningococcal group A epidemics in Finland and Brazil, emphasize the importance of having a well-tested vaccine available. Earlier this year, Dr. Makela contacted NIAID concerning support for a trial of the group A vaccine. NIAID's Infectious Diseases Branch has been supporting clinical trials of the vaccine in children in this country for several years and had begun planning for a larger field trial.

Approximately 120,000 Finnish children ages 3 months to 6 years will receive the meningococcal vaccine or, as a control, an experimental vaccine for the prevention of Haemophilus influenzae type b meningitis, a disease similar in many respects and often confused with meningococcal meningitis.

In order to prepare children for the disease's expected peak season in March, April, and May, regular clinic personnel in well-baby clinics in two counties will vaccinate study participants during 2 weeks in November.

Participation in the study will be completely voluntary, and the written informed consent of parents is required prior to vaccination, consistent with requirements of the DH EW for the protection of human subjects in research.

These require review not only by NIH staff scientists but by a Finnish committee to be sure that the research complies with Finnish law and Finnish standards of medical practice.

Blood samples from a small percentage of the group will be observed for development of protective antibodies in response to vaccination.

Throat swabs from the same children will indicate the number of carriers—people who have the bacteria in their throats and are, thus, capable of infecting others, but who do not become sick themselves.

All vaccinated children will be carefully followed to determine how many in each group develop later infections. This information will help to define the effectiveness of the meningococcal vaccine and will also provide useful information on the H. influenzae type b vaccine.

The meningococcal group A vaccine was originally developed by scientists at Walter Reed Army Institute of Research, led by Dr. Malcolm S. Artenstein. The vaccine actually consists of the outer shell of the whole bacterium.

Anthony Tsiu Returns to Hong Kong; Outlook Is Bright After Heart Surgery

When 10-year-old Anthony Tsiu left the Clinical Center recently to return to his home in North Point, Hong Kong, he took with him a new Redskins helmet and T-shirt and a bright outlook for the future—all gifts of the staff on Nursing Unit 6W.

Anthony was born with complex heart disease—tetralogy of Fallot. In tetralogy, a hole in the wall (septum) normally separating the ventricles of the heart permits venous (deoxygenated) blood to mix with arterial (oxygenated) blood and circulate throughout the body.

Anthony was born with complex heart defects called Tetralogy of Fallot. In tetralogy, a hole in the wall (septum) normally separating the ventricles of the heart permits venous (deoxygenated) blood to mix with arterial (oxygenated) blood and circulate throughout the body.

Anthony was born with complex heart defects called Tetralogy of Fallot. In tetralogy, a hole in the wall (septum) normally separating the ventricles of the heart permits venous (deoxygenated) blood to mix with arterial (oxygenated) blood and circulate throughout the body.

Anthony was born with complex heart defects called Tetralogy of Fallot. In tetralogy, a hole in the wall (septum) normally separating the ventricles of the heart permits venous (deoxygenated) blood to mix with arterial (oxygenated) blood and circulate throughout the body.

Anthony was born with complex heart defects called Tetralogy of Fallot. In tetralogy, a hole in the wall (septum) normally separating the ventricles of the heart permits venous (deoxygenated) blood to mix with arterial (oxygenated) blood and circulate throughout the body.

Anthony was born with complex heart defects called Tetralogy of Fallot. In tetralogy, a hole in the wall (septum) normally separating the ventricles of the heart permits venous (deoxygenated) blood to mix with arterial (oxygenated) blood and circulate throughout the body.

Anthony was born with complex heart defects called Tetralogy of Fallot. In tetralogy, a hole in the wall (septum) normally separating the ventricles of the heart permits venous (deoxygenated) blood to mix with arterial (oxygenated) blood and circulate throughout the body.

Anthony was born with complex heart defects called Tetralogy of Fallot. In tetralogy, a hole in the wall (septum) normally separating the ventricles of the heart permits venous (deoxygenated) blood to mix with arterial (oxygenated) blood and circulate throughout the body.

Anthony was born with complex heart defects called Tetralogy of Fallot. In tetralogy, a hole in the wall (septum) normally separating the ventricles of the heart permits venous (deoxygenated) blood to mix with arterial (oxygenated) blood and circulate throughout the body.

Anthony was born with complex heart defects called Tetralogy of Fallot. In tetralogy, a hole in the wall (septum) normally separating the ventricles of the heart permits venous (deoxygenated) blood to mix with arterial (oxygenated) blood and circulate throughout the body.

Anthony was born with complex heart defects called Tetralogy of Fallot. In tetralogy, a hole in the wall (septum) normally separating the ventricles of the heart permits venous (deoxygenated) blood to mix with arterial (oxygenated) blood and circulate throughout the body.

Anthony was born with complex heart defects called Tetralogy of Fallot. In tetralogy, a hole in the wall (septum) normally separating the ventricles of the heart permits venous (deoxygenated) blood to mix with arterial (oxygenated) blood and circulate throughout the body.

Anthony was born with complex heart defects called Tetralogy of Fallot. In tetralogy, a hole in the wall (septum) normally separating the ventricles of the heart permits venous (deoxygenated) blood to mix with arterial (oxygenated) blood and circulate throughout the body.

Anthony was born with complex heart defects called Tetralogy of Fallot. In tetralogy, a hole in the wall (septum) normally separating the ventricles of the heart permits venous (deoxygenated) blood to mix with arterial (oxygenated) blood and circulate throughout the body.

Anthony was born with complex heart defects called Tetralogy of Fallot. In tetralogy, a hole in the wall (septum) normally separating the ventricles of the heart permits venous (deoxygenated) blood to mix with arterial (oxygenated) blood and circulate throughout the body.

Anthony was born with complex heart defects called Tetralogy of Fallot. In tetralogy, a hole in the wall (septum) normally separating the ventricles of the heart permits venous (deoxygenated) blood to mix with arterial (oxygenated) blood and circulate throughout the body.

Anthony was born with complex heart defects called Tetralogy of Fallot. In tetralogy, a hole in the wall (septum) normally separating the ventricles of the heart permits venous (deoxygenated) blood to mix with arterial (oxygenated) blood and circulate throughout the body.

Anthony was born with complex heart defects called Tetralogy of Fallot. In tetralogy, a hole in the wall (septum) normally separating the ventricles of the heart permits venous (deoxygenated) blood to mix with arterial (oxygenated) blood and circulate throughout the body.
Harold W. Curran Ends 44 Years Fed’l Service

Harold W. Curran, executive officer of the Division of Research Grants since 1959, recently retired after 44 years of Federal service.

Mr. Curran began his career in Government with the Census Bureau in 1930. He was affiliated with several Federal agencies, including the Farm Credit Bureau and the Federal Bureau of Investigation, before he joined the Social Security Administration in 1937.

In 1940, he moved to the Office of Education as Director of Finance for training programs in the Division of Vocational Education.

After World War II, Mr. Curran worked with the budget office of the Federal Security Agency—now part of the HEW Office of the Assistant Secretary, Comptroller—until 1950 when he came to NIH as budget and fiscal officer. Two years later, he became assistant executive officer of NIH.

In 1958 he left NIH to become the first executive officer of the PHS Indian Health Service. He returned here in 1959 as executive officer of the Division of

Prize Drawing Is Scheduled

For CFC Donors on Nov. 8

Combined Federal Campaign officials will hold a drawing of $160 worth of prizes donated by the NIH Recreation and Welfare Association this Friday, Nov. 8, at 1:30 p.m. in the A Wing lobby of Bldg. 31.

In order to be eligible for a prize, employees who have contributed to the CFC receive a ticket stub from their CFC keyman.

Broader Participation

In CFC Is Requested

Combined Federal Campaign figures last week showed that NIH has reached 78% of its goal of $187,380, with 2 weeks to go.

As of last week, total contributions were $146,489, with an average gift of $34.76 per person. These donations came from 4,214 NIH employees.

In discussing the campaign, Dr. Milo D. Leavitt, CFC vice chairman, said: “We would like to see a much broader participation in the campaign by NIH employees. Only 48% of the 9,796 employees have contributed so far.

“They have given generously. But it is the remaining 52% that we are encouraging to give to this worthy cause which only comes once a year,” he further explained. Dr. Leavitt is Director of the Fogarty International Center.

Four NIH units have now surpassed 100% of their quotas: P1C; NIGMS; DRG, and NLM. DCRT has now 95%, with NIAMD at 85%, and NIDR and NIAID both at 89%, and OD at 82%.

CVH STUDY HELPS EXPLAIN IMMUNE SYSTEM

The Complex Mechanism of Antibody Failure in CVH

Large arrow at bottom indicates blockage in normal B-cell maturation into antibody producing plasma cells. B-cells and T-cells are believed to originate as primitive stem cells of the bone marrow. Other immunologic factors are lymphokines, which assist in the rejection of grafts and in normal delayed hypersensitivity reactions.

(Continued from Page 1)

major health plans will answer questions on the 1975 contracts on Thursday, Nov. 21, at 2 p.m., in Wilson Hall, Bldg. 1. All employees are invited.

A booklet, entitled Open Season, Instructions and Information About Plan Changes Effective 1975, will be distributed to all employees. Brochures on a new comprehensive group-practice plan, University Affiliated Health Plans, Inc., will be distributed at the same time.

All of the plans have changes in benefits. Brochures of the other plans will be available in personnel offices.

Most employees will be charged lower premiums for coverage next year because of a change in the health benefits law which increases the Government’s premium contribution from 50 to 60 percent.

The Civil Service Commission negotiated lower-than-average increases with the Government-wide carriers.