Skip to main content
NIH Record - National Institutes of Health

Scientists Develop Potential Strategy Against Leukemia Drug Resistance

Scientists from NIH and Cincinnati Children’s Hospital Medical Center have devised a potential treatment against a common type of leukemia that could have implications for many other types of cancer. The new approach takes aim at a way that cancer cells evade the effects of drugs, a process called adaptive resistance.

The researchers, in a range of studies, identified a cellular pathway that allows a form of acute myeloid leukemia (AML), a deadly blood and bone marrow cancer, to elude the activity of a promising class of drugs. They then engineered a compound that appears to launch a two-pronged attack against the cancer. In several experiments, the compound blocked a mutant protein that causes the AML. At the same time, it halted the cancer cells’ ability to sidestep the compound’s effects. The results, reported Sept. 4 in Science Translational Medicine, could lead to the development of new therapies against AML and cancers that act in similar ways.

Co-corresponding authors Dr. Daniel Starczynowski at Cincinnati Children’s, Dr. Craig Thomas at NCATS and their colleagues wanted to better understand drug resistance in a form of AML caused by a mutant protein called FLT3. This form of AML accounts for roughly 25 percent of all newly diagnosed AML cases, and patients often have a poor prognosis. A more thorough understanding of the drug resistance process could help them find ways to improve therapy options.

The NIH Record

The NIH Record, founded in 1949, is the biweekly newsletter for employees of the National Institutes of Health.

Published 25 times each year, it comes out on payday Fridays.

Associate Editor: Carla Garnett
Carla.Garnett@nih.gov

Staff Writers:

Eric Bock
Eric.Bock@nih.gov

Dana Talesnik
Dana.Talesnik@nih.gov

Back to Top