Skip to main content
NIH Record - National Institutes of Health

NIH Scientists Advance Understanding of Herpesvirus Infection

Image of Earth as seen from space

Globally, the World Health Organization estimates that 500 million people are infected with HSV-2 while two-thirds of the population are infected with HSV-1.

Herpes simplex virus (HSV) infections last a lifetime. Once a person has been infected, the virus can remain dormant (latent) for years before periodically reactivating to cause disease. This poorly understood cycle has frustrated scientists for years. Now, NIH scientists have identified a set of protein complexes that are recruited to viral genes and stimulate both initial infection and reactivation from latency. Environmental stresses known to regulate these proteins also induce reactivation.

Globally, the World Health Organization estimates that 500 million people are infected with HSV-2 while two-thirds of the population are infected with HSV-1. These viruses cause human diseases ranging from oral cold sores to genital lesions to serious eye conditions that can lead to blindness. In infants, HSV can cause neurological and developmental problems.

People infected with HSV also have an enhanced risk of acquiring or transmitting human immunodeficiency virus (HIV).

Scientists at NIAID previously made progress toward understanding the role of cellular protein HCF-1 in initiating HSV infection and reactivation. HCF-1 and associated proteins are recruited to the viral genome to enable the virus to replicate and spread. This previous work identified targets for the development of therapeutics to suppress infection and reactivation.

Their latest work, with collaborators from Princeton University, identifies new HCF-1 protein complexes that play additional roles in initiating viral infection and reactivation. Reporting in Cell Host & Microbe, the scientists found they could reactivate latent HSV in a mouse model using compounds that turn on components of these HCF-1 protein complexes. Interestingly, some of these HCF-1-associated proteins also are involved in HIV reactivation from latency.

The researchers are continuing to investigate the protein complexes involved in promoting HSV gene expression, infection and reactivation from latency. Identifying these complexes and understanding the mechanisms by which they function can potentially reveal additional targets for the development of new therapeutics.

Back to Top