Skip to main content
NIH Record - National Institutes of Health

International Team Confirms New Genetic Mutation Link to ALS

Kinesin family member 5A (KIF5A), a gene previously linked to two rare neurodegenerative disorders, has been definitively connected to amyotrophic lateral sclerosis (ALS) by an international team from several of the world’s top ALS research labs. The findings identify how mutations in KIF5A disrupt transport of key proteins up and down long, threadlike axons that connect nerve cells between the brain and the spine, eventually leading to the neuromuscular symptoms of ALS.

The discovery, published Mar. 21 in Neuron, was led by Dr. Bryan Traynor of NIA and Dr. John Landers of the University of Massachusetts Medical School, Worcester, with key funding support from NIA, NINDS and several public and private sector organizations. Genetic data collected by teams of scientists worldwide contributed to the project.

It took a comprehensive, collaborative effort to analyze a massive amount of genetic data to pin down KIF5A as a suspect for ALS, also known as Lou Gehrig’s disease. To zero in on KIF5A, the NIH team performed a large-scale genome-wide association study, while the University of Massachusetts team concentrated on analyzing rare variants in next-generation sequence data. More than 125,000 samples were used in this study, making it by far the largest such study of ALS performed to date.

“The extraordinary teamwork that went into this study underlines the value of global, collaborative science as we seek to better understand devastating diseases like ALS,” said NIA director Dr. Richard Hodes. “These types of collaborative data collection and analysis are important in identifying the pathways underlying disease and in developing approaches to treatment and prevention.”

Back to Top